这篇文章主要介绍“Hadoo是怎么将作业提交给集群的”,在日常操作中,相信很多人在Hadoo是怎么将作业提交给集群的问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Hadoo是怎么将作业提交给集群的”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
专注于为中小企业提供做网站、网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业寿县免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
一:MapReduce提交作业过程的流程图
通过图可知主要有三个部分,即: 1) JobClient:作业客户端。 2) JobTracker:作业的跟踪器。 3) TaskTracker:任务的跟踪器。
MapReduce将作业提交给JobClient,然后JobClient与JobTracker交互,JobTracker再去监控与分配TaskTracker,完成具体作业的处理。
以下分析的是Hadoop2.6.4的源码。请注意: 源码与之前Hadoop版本的略有差别,所以有些概念还是与上图有点差别。
二:MapReduce如何提交作业
2.1 完成作业的真正提交,即:
**job.waitForCompletion(true)**
跟踪waitForCompletion, 注意其中的submit(),如下:
/** * Submit the job to the cluster and wait for it to finish. */ public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobState.DEFINE) { submit(); } if (verbose) { monitorAndPrintJob(); } else { // get the completion poll interval from the client. int completionPollIntervalMillis = Job.getCompletionPollInterval(cluster.getConf()); while (!isComplete()) { try { Thread.sleep(completionPollIntervalMillis); } catch (InterruptedException ie) { } } } return isSuccessful(); }
参数 verbose ,如果想在控制台打印当前的任务执行进度,则设为true
**
2.2 submit()
** 在submit 方法中会把Job提交给对应的Cluster,然后不等待Job执行结束就立刻返回
同时会把Job实例的状态设置为JobState.RUNNING,从而来表示Job正在进行中
然后在Job运行过程中,可以调用getJobState()来获取Job的运行状态
/** * Submit the job to the cluster and return immediately. */ public void submit() throws IOException, InterruptedException, ClassNotFoundException { ensureState(JobState.DEFINE); setUseNewAPI(); connect(); final JobSubmitter submitter = getJobSubmitter(cluster.getFileSystem(), cluster.getClient()); status = ugi.doAs(new PrivilegedExceptionAction() { public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException { return submitter.submitJobInternal(Job.this, cluster); } }); state = JobState.RUNNING; LOG.info("The url to track the job: " + getTrackingURL()); }
而在任务提交前,会先通过connect()方法链接集群(Cluster):
private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException { if (cluster == null) { cluster = ugi.doAs(new PrivilegedExceptionAction() { public Cluster run() throws IOException, InterruptedException, ClassNotFoundException { return new Cluster(getConfiguration()); } }); } }
这是一个线程保护方法。这个方法中根据配置信息初始化了一个Cluster对象,即代表集群
public Cluster(Configuration conf) throws IOException { this(null, conf); } public Cluster(InetSocketAddress jobTrackAddr, Configuration conf) throws IOException { this.conf = conf; this.ugi = UserGroupInformation.getCurrentUser(); initialize(jobTrackAddr, conf); } private void initialize(InetSocketAddress jobTrackAddr, Configuration conf) throws IOException { synchronized (frameworkLoader) { for (ClientProtocolProvider provider : frameworkLoader) { LOG.debug("Trying ClientProtocolProvider : " + provider.getClass().getName()); ClientProtocol clientProtocol = null; try { if (jobTrackAddr == null) { clientProtocol = provider.create(conf); } else { clientProtocol = provider.create(jobTrackAddr, conf); } if (clientProtocol != null) { clientProtocolProvider = provider; client = clientProtocol; LOG.debug("Picked " + provider.getClass().getName() + " as the ClientProtocolProvider"); break; } else { LOG.debug("Cannot pick " + provider.getClass().getName() + " as the ClientProtocolProvider - returned null protocol"); } } catch (Exception e) { LOG.info("Failed to use " + provider.getClass().getName() + " due to error: " + e.getMessage()); } } } if (null == clientProtocolProvider || null == client) { throw new IOException( "Cannot initialize Cluster. Please check your configuration for " + MRConfig.FRAMEWORK_NAME + " and the correspond server addresses."); } }
而在上段代码之前,
private static ServiceLoaderframeworkLoader = ServiceLoader.load(ClientProtocolProvider.class);
可以看出创建客户端代理阶段使用了java.util.ServiceLoader,包含LocalClientProtocolProvider(本地作业)和YarnClientProtocolProvider(yarn作业)(hadoop有一个Yarn参数mapreduce.framework.name用来控制你选择的应用框架。在MRv2里,mapreduce.framework.name有两个值:local和yarn),此处会根据mapreduce.framework.name的配置创建相应的客户端
mapred-site.xml:
mapreduce.framework.name yarn
2.3 实例化Cluster后开始真正的任务提交
submitter.submitJobInternal(Job.this, cluster);
JobStatus submitJobInternal(Job job, Cluster cluster) throws ClassNotFoundException, InterruptedException, IOException { //validate the jobs output specs checkSpecs(job); Configuration conf = job.getConfiguration(); addMRFrameworkToDistributedCache(conf); Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf); //configure the command line options correctly on the submitting dfs InetAddress ip = InetAddress.getLocalHost(); if (ip != null) { submitHostAddress = ip.getHostAddress(); submitHostName = ip.getHostName(); conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName); conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress); } JobID jobId = submitClient.getNewJobID(); job.setJobID(jobId); Path submitJobDir = new Path(jobStagingArea, jobId.toString()); JobStatus status = null; try { conf.set(MRJobConfig.USER_NAME, UserGroupInformation.getCurrentUser().getShortUserName()); conf.set("hadoop.http.filter.initializers", "org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer"); conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString()); LOG.debug("Configuring job " + jobId + " with " + submitJobDir + " as the submit dir"); // get delegation token for the dir TokenCache.obtainTokensForNamenodes(job.getCredentials(), new Path[] { submitJobDir }, conf); populateTokenCache(conf, job.getCredentials()); // generate a secret to authenticate shuffle transfers if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) { KeyGenerator keyGen; try { int keyLen = CryptoUtils.isShuffleEncrypted(conf) ? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS, MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS) : SHUFFLE_KEY_LENGTH; keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM); keyGen.init(keyLen); } catch (NoSuchAlgorithmException e) { throw new IOException("Error generating shuffle secret key", e); } SecretKey shuffleKey = keyGen.generateKey(); TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(), job.getCredentials()); } copyAndConfigureFiles(job, submitJobDir); Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir); // Create the splits for the job LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir)); int maps = writeSplits(job, submitJobDir); conf.setInt(MRJobConfig.NUM_MAPS, maps); LOG.info("number of splits:" + maps); // write "queue admins of the queue to which job is being submitted" // to job file. String queue = conf.get(MRJobConfig.QUEUE_NAME, JobConf.DEFAULT_QUEUE_NAME); AccessControlList acl = submitClient.getQueueAdmins(queue); conf.set(toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString()); // removing jobtoken referrals before copying the jobconf to HDFS // as the tasks don't need this setting, actually they may break // because of it if present as the referral will point to a // different job. TokenCache.cleanUpTokenReferral(conf); if (conf.getBoolean( MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED, MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) { // Add HDFS tracking ids ArrayListtrackingIds = new ArrayList (); for (Token extends TokenIdentifier> t : job.getCredentials().getAllTokens()) { trackingIds.add(t.decodeIdentifier().getTrackingId()); } conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS, trackingIds.toArray(new String[trackingIds.size()])); } // Set reservation info if it exists ReservationId reservationId = job.getReservationId(); if (reservationId != null) { conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString()); } // Write job file to submit dir writeConf(conf, submitJobFile); // // Now, actually submit the job (using the submit name) // printTokens(jobId, job.getCredentials()); status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials()); if (status != null) { return status; } else { throw new IOException("Could not launch job"); } } finally { if (status == null) { LOG.info("Cleaning up the staging area " + submitJobDir); if (jtFs != null && submitJobDir != null) jtFs.delete(submitJobDir, true); } } }
通过如下代码正式提交Job到Yarn:
status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials());
到最后,通过RPC的调用,最终会返回一个JobStatus对象,它的toString方法可以在JobClient端打印运行的相关日志信息。
if (status != null) { return status; }
public String toString() { StringBuffer buffer = new StringBuffer(); buffer.append("job-id : " + jobid); buffer.append("uber-mode : " + isUber); buffer.append("map-progress : " + mapProgress); buffer.append("reduce-progress : " + reduceProgress); buffer.append("cleanup-progress : " + cleanupProgress); buffer.append("setup-progress : " + setupProgress); buffer.append("runstate : " + runState); buffer.append("start-time : " + startTime); buffer.append("user-name : " + user); buffer.append("priority : " + priority); buffer.append("scheduling-info : " + schedulingInfo); buffer.append("num-used-slots" + numUsedSlots); buffer.append("num-reserved-slots" + numReservedSlots); buffer.append("used-mem" + usedMem); buffer.append("reserved-mem" + reservedMem); buffer.append("needed-mem" + neededMem); return buffer.toString(); }
(到这里任务都给yarn了,这里就只剩下监控(如果设置为true的话)),即:
if (verbose) { monitorAndPrintJob(); }
这只是完成了作业Job的提交。
到此,关于“Hadoo是怎么将作业提交给集群的”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
新闻名称:Hadoo是怎么将作业提交给集群的
网站URL:http://scpingwu.com/article/peshpp.html