本篇内容介绍了“怎么使用PostgreSQL ExecAgg函数”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
为遵义等地区用户提供了全套网页设计制作服务,及遵义网站建设行业解决方案。主营业务为成都网站建设、网站建设、遵义网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
一、数据结构
AggState
聚合函数执行时状态结构体,内含AggStatePerAgg等结构体
/* --------------------- * AggState information * * ss.ss_ScanTupleSlot refers to output of underlying plan. * ss.ss_ScanTupleSlot指的是基础计划的输出. * (ss = ScanState,ps = PlanState) * * Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and * ecxt_aggnulls arrays, which hold the computed agg values for the current * input group during evaluation of an Agg node's output tuple(s). We * create a second ExprContext, tmpcontext, in which to evaluate input * expressions and run the aggregate transition functions. * 注意:ss.ps.ps_ExprContext包含了ecxt_aggvalues和ecxt_aggnulls数组, * 这两个数组保存了在计算agg节点的输出元组时当前输入组已计算的agg值. * --------------------- */ /* these structs are private in nodeAgg.c: */ //在nodeAgg.c中私有的结构体 typedef struct AggStatePerAggData *AggStatePerAgg; typedef struct AggStatePerTransData *AggStatePerTrans; typedef struct AggStatePerGroupData *AggStatePerGroup; typedef struct AggStatePerPhaseData *AggStatePerPhase; typedef struct AggStatePerHashData *AggStatePerHash; typedef struct AggState { //第一个字段是NodeTag(继承自ScanState) ScanState ss; /* its first field is NodeTag */ //targetlist和quals中所有的Aggref List *aggs; /* all Aggref nodes in targetlist & quals */ //链表的大小(可以为0) int numaggs; /* length of list (could be zero!) */ //pertrans条目大小 int numtrans; /* number of pertrans items */ //Agg策略模式 AggStrategy aggstrategy; /* strategy mode */ //agg-splitting模式,参见nodes.h AggSplit aggsplit; /* agg-splitting mode, see nodes.h */ //指向当前步骤数据的指针 AggStatePerPhase phase; /* pointer to current phase data */ //步骤数(包括0) int numphases; /* number of phases (including phase 0) */ //当前步骤 int current_phase; /* current phase number */ //per-Aggref信息 AggStatePerAgg peragg; /* per-Aggref information */ //per-Trans状态信息 AggStatePerTrans pertrans; /* per-Trans state information */ //长生命周期数据的ExprContexts(hashtable) ExprContext *hashcontext; /* econtexts for long-lived data (hashtable) */ ////长生命周期数据的ExprContexts(每一个GS使用) ExprContext **aggcontexts; /* econtexts for long-lived data (per GS) */ //输入表达式的ExprContext ExprContext *tmpcontext; /* econtext for input expressions */ #define FIELDNO_AGGSTATE_CURAGGCONTEXT 14 //当前活跃的aggcontext ExprContext *curaggcontext; /* currently active aggcontext */ //当前活跃的aggregate(如存在) AggStatePerAgg curperagg; /* currently active aggregate, if any */ #define FIELDNO_AGGSTATE_CURPERTRANS 16 //当前活跃的trans state AggStatePerTrans curpertrans; /* currently active trans state, if any */ //输入结束? bool input_done; /* indicates end of input */ //Agg扫描结束? bool agg_done; /* indicates completion of Agg scan */ //最后一个grouping set int projected_set; /* The last projected grouping set */ #define FIELDNO_AGGSTATE_CURRENT_SET 20 //将要解析的当前grouping set int current_set; /* The current grouping set being evaluated */ //当前投影操作的分组列 Bitmapset *grouped_cols; /* grouped cols in current projection */ //倒序的分组列链表 List *all_grouped_cols; /* list of all grouped cols in DESC order */ /* These fields are for grouping set phase data */ //-------- 下面的列用于grouping set步骤数据 //所有步骤中最大的sets大小 int maxsets; /* The max number of sets in any phase */ //所有步骤的数组 AggStatePerPhase phases; /* array of all phases */ //对于phases > 1,已排序的输入信息 Tuplesortstate *sort_in; /* sorted input to phases > 1 */ //对于下一个步骤,输入已拷贝 Tuplesortstate *sort_out; /* input is copied here for next phase */ //排序结果的slot TupleTableSlot *sort_slot; /* slot for sort results */ /* these fields are used in AGG_PLAIN and AGG_SORTED modes: */ //------- 下面的列用于AGG_PLAIN和AGG_SORTED模式: //per-group指针的grouping set编号数组 AggStatePerGroup *pergroups; /* grouping set indexed array of per-group * pointers */ //当前组的第一个元组拷贝 HeapTuple grp_firstTuple; /* copy of first tuple of current group */ /* these fields are used in AGG_HASHED and AGG_MIXED modes: */ //--------- 下面的列用于AGG_HASHED和AGG_MIXED模式: //是否已填充hash表? bool table_filled; /* hash table filled yet? */ //hash桶数? int num_hashes; //相应的哈希表数据数组 AggStatePerHash perhash; /* array of per-hashtable data */ //per-group指针的grouping set编号数组 AggStatePerGroup *hash_pergroup; /* grouping set indexed array of * per-group pointers */ /* support for evaluation of agg input expressions: */ //---------- agg输入表达式解析支持 #define FIELDNO_AGGSTATE_ALL_PERGROUPS 34 //首先是->pergroups,然后是hash_pergroup AggStatePerGroup *all_pergroups; /* array of first ->pergroups, than * ->hash_pergroup */ //投影实现机制 ProjectionInfo *combinedproj; /* projection machinery */ } AggState; /* Primitive options supported by nodeAgg.c: */ //nodeag .c支持的基本选项 #define AGGSPLITOP_COMBINE 0x01 /* substitute combinefn for transfn */ #define AGGSPLITOP_SKIPFINAL 0x02 /* skip finalfn, return state as-is */ #define AGGSPLITOP_SERIALIZE 0x04 /* apply serializefn to output */ #define AGGSPLITOP_DESERIALIZE 0x08 /* apply deserializefn to input */ /* Supported operating modes (i.e., useful combinations of these options): */ //支持的操作模式 typedef enum AggSplit { /* Basic, non-split aggregation: */ //基本 : 非split聚合 AGGSPLIT_SIMPLE = 0, /* Initial phase of partial aggregation, with serialization: */ //部分聚合的初始步骤,序列化 AGGSPLIT_INITIAL_SERIAL = AGGSPLITOP_SKIPFINAL | AGGSPLITOP_SERIALIZE, /* Final phase of partial aggregation, with deserialization: */ //部分聚合的最终步骤,反序列化 AGGSPLIT_FINAL_DESERIAL = AGGSPLITOP_COMBINE | AGGSPLITOP_DESERIALIZE } AggSplit; /* Test whether an AggSplit value selects each primitive option: */ //测试AggSplit选择了哪些基本选项 #define DO_AGGSPLIT_COMBINE(as) (((as) & AGGSPLITOP_COMBINE) != 0) #define DO_AGGSPLIT_SKIPFINAL(as) (((as) & AGGSPLITOP_SKIPFINAL) != 0) #define DO_AGGSPLIT_SERIALIZE(as) (((as) & AGGSPLITOP_SERIALIZE) != 0) #define DO_AGGSPLIT_DESERIALIZE(as) (((as) & AGGSPLITOP_DESERIALIZE) != 0)
二、源码解读
ExecAgg函数,首先获取AggState运行状态,然后根据各个阶段(aggstate->phase)的策略(aggstrategy)执行相应的逻辑.如使用Hash聚合,则只有一个节点,但有两个策略,首先是AGG_HASHED,该策略对输入元组按照分组列值进行Hash,同时执行转换函数计算中间结果值,缓存到哈希表中;然后执行AGG_MIXED策略,从Hash表中获取结果元组并返回结果元组(每一result为一个结果行).
/* * ExecAgg - * * ExecAgg receives tuples from its outer subplan and aggregates over * the appropriate attribute for each aggregate function use (Aggref * node) appearing in the targetlist or qual of the node. The number * of tuples to aggregate over depends on whether grouped or plain * aggregation is selected. In grouped aggregation, we produce a result * row for each group; in plain aggregation there's a single result row * for the whole query. In either case, the value of each aggregate is * stored in the expression context to be used when ExecProject evaluates * the result tuple. * ExecAgg接收从outer子计划返回的元组合适的属性上为每一个聚合函数(出现在投影列或节点表达式)执行聚合. * 需要聚合的元组数量依赖于是否已分组或者选择普通聚合. * 在已分组的聚合操作宏,为每一个组产生结果行;普通聚合,整个查询只有一个结果行. * 不管哪种情况,每一个聚合结果值都会存储在表达式上下文中(ExecProject会解析结果元组) */ static TupleTableSlot * ExecAgg(PlanState *pstate) { AggState *node = castNode(AggState, pstate); TupleTableSlot *result = NULL; CHECK_FOR_INTERRUPTS(); if (!node->agg_done) { /* Dispatch based on strategy */ //基于策略进行分发 switch (node->phase->aggstrategy) { case AGG_HASHED: if (!node->table_filled) agg_fill_hash_table(node); /* FALLTHROUGH */ //填充后,执行MIXED case AGG_MIXED: result = agg_retrieve_hash_table(node); break; case AGG_PLAIN: case AGG_SORTED: result = agg_retrieve_direct(node); break; } if (!TupIsNull(result)) return result; } return NULL; }
agg_fill_hash_table
读取输入并构建哈希表.
lookup_hash_entries函数根据输入元组构建分组列哈希表(搜索或新建条目),advance_aggregates调用转换函数计算中间结果并缓存.
/* * ExecAgg for hashed case: read input and build hash table * 读取输入并构建哈希表 */ static void agg_fill_hash_table(AggState *aggstate) { TupleTableSlot *outerslot; ExprContext *tmpcontext = aggstate->tmpcontext; /* * Process each outer-plan tuple, and then fetch the next one, until we * exhaust the outer plan. * 处理每一个outer-plan返回的元组,然后继续提取下一个,直至完成所有元组的处理. */ for (;;) { //--------- 循环直至完成所有元组的处理 //提取输入的元组 outerslot = fetch_input_tuple(aggstate); if (TupIsNull(outerslot)) break;//已完成处理,退出循环 /* set up for lookup_hash_entries and advance_aggregates */ //配置lookup_hash_entries和advance_aggregates函数 //把元组放在临时内存上下文中 tmpcontext->ecxt_outertuple = outerslot; /* Find or build hashtable entries */ //检索或构建哈希表条目 lookup_hash_entries(aggstate); /* Advance the aggregates (or combine functions) */ //推动聚合(或组合函数) advance_aggregates(aggstate); /* * Reset per-input-tuple context after each tuple, but note that the * hash lookups do this too * 重置per-input-tuple内存上下文,但需要注意hash检索也会做这个事情 */ ResetExprContext(aggstate->tmpcontext); } aggstate->table_filled = true; /* Initialize to walk the first hash table */ //初始化用于遍历第一个哈希表 select_current_set(aggstate, 0, true); ResetTupleHashIterator(aggstate->perhash[0].hashtable, &aggstate->perhash[0].hashiter); }
agg_retrieve_hash_table
agg_retrieve_hash_table函数在hash表中检索结果,执行投影等相关操作.
/* * ExecAgg for hashed case: retrieving groups from hash table * ExecAgg(Hash实现版本):在hash表中检索组 */ static TupleTableSlot * agg_retrieve_hash_table(AggState *aggstate) { ExprContext *econtext; AggStatePerAgg peragg; AggStatePerGroup pergroup; TupleHashEntryData *entry; TupleTableSlot *firstSlot; TupleTableSlot *result; AggStatePerHash perhash; /* * get state info from node. * 从node节点中获取状态信息. * * econtext is the per-output-tuple expression context. * econtext是per-output-tuple表达式上下文. */ econtext = aggstate->ss.ps.ps_ExprContext; peragg = aggstate->peragg; firstSlot = aggstate->ss.ss_ScanTupleSlot; /* * Note that perhash (and therefore anything accessed through it) can * change inside the loop, as we change between grouping sets. * 注意,在分组之间切换时,perhash在循环中可能会改变 */ perhash = &aggstate->perhash[aggstate->current_set]; /* * We loop retrieving groups until we find one satisfying * aggstate->ss.ps.qual * 循环检索groups,直至检索到一个符合aggstate->ss.ps.qual条件的组. */ while (!aggstate->agg_done) { //------------- 选好 //获取Slot TupleTableSlot *hashslot = perhash->hashslot; int i; //检查中断 CHECK_FOR_INTERRUPTS(); /* * Find the next entry in the hash table * 检索hash表的下一个条目 */ entry = ScanTupleHashTable(perhash->hashtable, &perhash->hashiter); if (entry == NULL) { //条目为NULL,切换到下一个set int nextset = aggstate->current_set + 1; if (nextset < aggstate->num_hashes) { /* * Switch to next grouping set, reinitialize, and restart the * loop. * 切换至下一个grouping set,重新初始化并重启循环 */ select_current_set(aggstate, nextset, true); perhash = &aggstate->perhash[aggstate->current_set]; ResetTupleHashIterator(perhash->hashtable, &perhash->hashiter); continue; } else { /* No more hashtables, so done */ //已完成检索,设置标记,退出 aggstate->agg_done = true; return NULL; } } /* * Clear the per-output-tuple context for each group * 为每一个group清除per-output-tuple上下文 * * We intentionally don't use ReScanExprContext here; if any aggs have * registered shutdown callbacks, they mustn't be called yet, since we * might not be done with that agg. * 在这里不会用到ReScanExprContext,如果存在aggs注册了shutdown回调, * 那应该还没有调用,因为我们可能还没有完成该agg的处理. */ ResetExprContext(econtext); /* * Transform representative tuple back into one with the right * columns. * 将典型元组转回具有正确列的元组. */ ExecStoreMinimalTuple(entry->firstTuple, hashslot, false); slot_getallattrs(hashslot); //清理元组 //重置firstSlot ExecClearTuple(firstSlot); memset(firstSlot->tts_isnull, true, firstSlot->tts_tupleDescriptor->natts * sizeof(bool)); for (i = 0; i < perhash->numhashGrpCols; i++) { //重置firstSlot int varNumber = perhash->hashGrpColIdxInput[i] - 1; firstSlot->tts_values[varNumber] = hashslot->tts_values[i]; firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i]; } ExecStoreVirtualTuple(firstSlot); pergroup = (AggStatePerGroup) entry->additional; /* * Use the representative input tuple for any references to * non-aggregated input columns in the qual and tlist. * 为qual和tlist中的非聚合输入列依赖使用典型输入元组 */ econtext->ecxt_outertuple = firstSlot; //准备投影slot prepare_projection_slot(aggstate, econtext->ecxt_outertuple, aggstate->current_set); //最终的聚合操作 finalize_aggregates(aggstate, peragg, pergroup); //投影 result = project_aggregates(aggstate); if (result) return result; } /* No more groups */ //没有更多的groups了,返回NULL return NULL; }
“怎么使用PostgreSQL ExecAgg函数”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
文章题目:怎么使用PostgreSQLExecAgg函数
转载源于:http://scpingwu.com/article/jjipsd.html