Btree(B-树)---C++
一棵M阶(M>2)的B树,是一棵平衡的M路平衡搜索树,可以是空树或者满足一下性质:
成都创新互联公司从2013年开始,先为南充等服务建站,南充等地企业,进行企业商务咨询服务。为南充企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
1. 根节点至少有两个孩子
2. 每个非根节点有[ ,M]个孩子
3. 每个非根节点有[ -1,M-1]个关键字,并且以升序排列
4. key[i]和key[i+1]之间的孩子节点的值介于key[i]、key[i+1]之间
5. 所有的叶子节点都在同一层
ps: 是向上取整
#pragma once templatestruct BTreeNode { K _keys[M]; // 关键字数组 BTreeNode * _subs[M + 1]; // 孩子数组 size_t _size; // 关键字的个数 BTreeNode * _parent; // 父亲 BTreeNode() :_size(0) , _parent(NULL) { for (size_t i = 0; i < M + 1; ++i) { _subs[i] = NULL; } } }; template struct Pair { K _first; V _second; Pair(const K& k = K(), const V& v = V()) :_first(k) , _second(v) {} }; template class BTree { typedef BTreeNode Node; public: BTree() :_root(NULL) {} Pair Find(const K& key) { Node* parent = NULL; Node* cur = _root; while (cur) { int i = 0; while (i < cur->_size && cur->_keys[i] < key) { ++i; } if (cur->_keys[i] == key) { return Pair (cur, i); } parent = cur; cur = cur->_subs[i]; } return Pair (parent, -1); } bool Insert(const K& key) { if (_root == NULL) { _root = new Node; _root->_keys[0] = key; ++_root->_size; return true; } Pair ret = Find(key); if (ret._second != -1) { return false; } K k = key; Node* cur = ret._first; Node* sub = NULL; // 在cur节点插入一个k while (1) { _InsertKey(cur, k, sub); if (cur->_size < M) { return true; } // 分裂 int boundary = M / 2; Node* tmp = new Node; size_t index = 0; size_t size = cur->_size; // 拷贝key for (int i = boundary + 1; i < size; ++i) { tmp->_keys[index++] = cur->_keys[i]; tmp->_size++; cur->_size--; } // 拷贝子节点 index = 0; for (int i = boundary + 1; i <= size; ++i) { tmp->_subs[index] = cur->_subs[i]; if (tmp->_subs[index]) tmp->_subs[index]->_parent = tmp; ++index; } k = cur->_keys[boundary]; cur->_size--; // 没有父亲 if (cur->_parent == NULL) { _root = new Node; _root->_keys[0] = k; _root->_subs[0] = cur; _root->_subs[1] = tmp; _root->_size = 1; tmp->_parent = _root; cur->_parent = _root; return true; } cur = cur->_parent; sub = tmp; } } void _InsertKey(Node* cur, const K& k, Node* sub) { int i = cur->_size - 1; while (i >= 0) { if (cur->_keys[i] > k) { cur->_keys[i + 1] = cur->_keys[i]; cur->_subs[i + 2] = cur->_subs[i + 1]; --i; } else { break; } } cur->_keys[i + 1] = k; cur->_subs[i + 2] = sub; if (sub) { sub->_parent = cur; } cur->_size++; } void InOrder() { _InOrder(_root); cout << endl; } void _InOrder(Node* root) { if (root == NULL) { return; } for (size_t i = 0; i < root->_size; ++i) { _InOrder(root->_subs[i]); cout << root->_keys[i] << " "; } _InOrder(root->_subs[root->_size]); } protected: Node* _root; }; void TestBTree1() { BTree t1; int a[] = { 53, 75, 139, 49, 145, 36, 101 }; for (int i = 0; i < sizeof(a) / sizeof(a[0]); ++i) { t1.Insert(a[i]); } t1.InOrder(); }
当前文章:Btree(B-树)---C++
当前路径:http://scpingwu.com/article/jgsshi.html