RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
怎么理解PostgreSQL的分区表

本篇内容主要讲解“怎么理解PostgreSQL的分区表”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么理解PostgreSQL的分区表”吧!

创新互联公司主营宣州网站建设的网络公司,主营网站建设方案,App定制开发,宣州h5微信平台小程序开发搭建,宣州网站营销推广欢迎宣州等地区企业咨询

在PG中,分区表通过"继承"的方式实现,这里就会存在一个问题,就是在插入数据时,PG如何确定数据应该插入到哪个目标分区?在PG中,通过函数ExecPrepareTupleRouting为路由待插入的元组做准备,主要的目的是确定元组所在的分区。

一、数据结构

ModifyTable
ModifyTable Node
通过插入、更新或删除,将子计划生成的行应用到结果表。

/* ----------------
 *   ModifyTable node -
 *      Apply rows produced by subplan(s) to result table(s),
 *      by inserting, updating, or deleting.
 *      通过插入、更新或删除,将子计划生成的行应用到结果表。
 *
 * If the originally named target table is a partitioned table, both
 * nominalRelation and rootRelation contain the RT index of the partition
 * root, which is not otherwise mentioned in the plan.  Otherwise rootRelation
 * is zero.  However, nominalRelation will always be set, as it's the rel that
 * EXPLAIN should claim is the INSERT/UPDATE/DELETE target.
 * 如果最初命名的目标表是分区表,则nominalRelation和rootRelation都包含分区根的RT索引,计划中没有另外提到这个索引。
 * 否则,根关系为零。但是,总是会设置名义关系,nominalRelation因为EXPLAIN应该声明的rel是INSERT/UPDATE/DELETE目标关系。
 * 
 * Note that rowMarks and epqParam are presumed to be valid for all the
 * subplan(s); they can't contain any info that varies across subplans.
 * 注意,rowMarks和epqParam被假定对所有子计划有效;
 * 它们不能包含任何在子计划中变化的信息。
 * ----------------
 */
typedef struct ModifyTable
{
    Plan        plan;
    CmdType     operation;      /* 操作类型;INSERT, UPDATE, or DELETE */
    bool        canSetTag;      /* 是否需要设置tag?do we set the command tag/es_processed? */
    Index       nominalRelation;    /* 用于EXPLAIN的父RT索引;Parent RT index for use of EXPLAIN */
    Index       rootRelation;   /* 根Root RT索引(如目标为分区表);Root RT index, if target is partitioned */
    bool        partColsUpdated;    /* 更新了层次结构中的分区关键字;some part key in hierarchy updated */
    List       *resultRelations;    /* RT索引的整型链表;integer list of RT indexes */
    int         resultRelIndex; /* 计划链表中第一个resultRel的索引;index of first resultRel in plan's list */
    int         rootResultRelIndex; /* 分区表根索引;index of the partitioned table root */
    List       *plans;          /* 生成源数据的计划链表;plan(s) producing source data */
    List       *withCheckOptionLists;   /* 每一个目标表均具备的WCO链表;per-target-table WCO lists */
    List       *returningLists; /* 每一个目标表均具备的RETURNING链表;per-target-table RETURNING tlists */
    List       *fdwPrivLists;   /* 每一个目标表的FDW私有数据链表;per-target-table FDW private data lists */
    Bitmapset  *fdwDirectModifyPlans;   /* FDW DM计划索引位图;indices of FDW DM plans */
    List       *rowMarks;       /* rowMarks链表;PlanRowMarks (non-locking only) */
    int         epqParam;       /* EvalPlanQual再解析使用的参数ID;ID of Param for EvalPlanQual re-eval */
    OnConflictAction onConflictAction;  /* ON CONFLICT action */
    List       *arbiterIndexes; /* 冲突仲裁器索引表;List of ON CONFLICT arbiter index OIDs  */
    List       *onConflictSet;  /* SET for INSERT ON CONFLICT DO UPDATE */
    Node       *onConflictWhere;    /* WHERE for ON CONFLICT UPDATE */
    Index       exclRelRTI;     /* RTI of the EXCLUDED pseudo relation */
    List       *exclRelTlist;   /* 已排除伪关系的投影列链表;tlist of the EXCLUDED pseudo relation */
} ModifyTable;

ResultRelInfo
ResultRelInfo结构体
每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。ResultRelInfo保存关于结果关系所需的所有信息,包括索引。

/*
 * ResultRelInfo
 * ResultRelInfo结构体
 *
 * Whenever we update an existing relation, we have to update indexes on the
 * relation, and perhaps also fire triggers.  ResultRelInfo holds all the
 * information needed about a result relation, including indexes.
 * 每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。
 * ResultRelInfo保存关于结果关系所需的所有信息,包括索引。
 * 
 * Normally, a ResultRelInfo refers to a table that is in the query's
 * range table; then ri_RangeTableIndex is the RT index and ri_RelationDesc
 * is just a copy of the relevant es_relations[] entry.  But sometimes,
 * in ResultRelInfos used only for triggers, ri_RangeTableIndex is zero
 * and ri_RelationDesc is a separately-opened relcache pointer that needs
 * to be separately closed.  See ExecGetTriggerResultRel.
 * 通常,ResultRelInfo是指查询范围表中的表;
 * ri_RangeTableIndex是RT索引,而ri_RelationDesc只是相关es_relations[]条目的副本。
 * 但有时,在只用于触发器的ResultRelInfos中,ri_RangeTableIndex为零(NULL),
 *   而ri_RelationDesc是一个需要单独关闭单独打开的relcache指针。
 *   具体可参考ExecGetTriggerResultRel结构体。
 */
typedef struct ResultRelInfo
{
    NodeTag     type;

    /* result relation's range table index, or 0 if not in range table */
    //RTE索引
    Index       ri_RangeTableIndex;

    /* relation descriptor for result relation */
    //结果/目标relation的描述符
    Relation    ri_RelationDesc;

    /* # of indices existing on result relation */
    //目标关系中索引数目
    int         ri_NumIndices;

    /* array of relation descriptors for indices */
    //索引的关系描述符数组(索引视为一个relation)
    RelationPtr ri_IndexRelationDescs;

    /* array of key/attr info for indices */
    //索引的键/属性数组
    IndexInfo **ri_IndexRelationInfo;

    /* triggers to be fired, if any */
    //触发的索引
    TriggerDesc *ri_TrigDesc;

    /* cached lookup info for trigger functions */
    //触发器函数(缓存)
    FmgrInfo   *ri_TrigFunctions;

    /* array of trigger WHEN expr states */
    //WHEN表达式状态的触发器数组
    ExprState **ri_TrigWhenExprs;

    /* optional runtime measurements for triggers */
    //可选的触发器运行期度量器
    Instrumentation *ri_TrigInstrument;

    /* FDW callback functions, if foreign table */
    //FDW回调函数
    struct FdwRoutine *ri_FdwRoutine;

    /* available to save private state of FDW */
    //可用于存储FDW的私有状态
    void       *ri_FdwState;

    /* true when modifying foreign table directly */
    //直接更新FDW时为T
    bool        ri_usesFdwDirectModify;

    /* list of WithCheckOption's to be checked */
    //WithCheckOption链表
    List       *ri_WithCheckOptions;

    /* list of WithCheckOption expr states */
    //WithCheckOption表达式链表
    List       *ri_WithCheckOptionExprs;

    /* array of constraint-checking expr states */
    //约束检查表达式状态数组
    ExprState **ri_ConstraintExprs;

    /* for removing junk attributes from tuples */
    //用于从元组中删除junk属性
    JunkFilter *ri_junkFilter;

    /* list of RETURNING expressions */
    //RETURNING表达式链表
    List       *ri_returningList;

    /* for computing a RETURNING list */
    //用于计算RETURNING链表
    ProjectionInfo *ri_projectReturning;

    /* list of arbiter indexes to use to check conflicts */
    //用于检查冲突的仲裁器索引的列表
    List       *ri_onConflictArbiterIndexes;

    /* ON CONFLICT evaluation state */
    //ON CONFLICT解析状态
    OnConflictSetState *ri_onConflict;

    /* partition check expression */
    //分区检查表达式链表
    List       *ri_PartitionCheck;

    /* partition check expression state */
    //分区检查表达式状态
    ExprState  *ri_PartitionCheckExpr;

    /* relation descriptor for root partitioned table */
    //分区root根表描述符
    Relation    ri_PartitionRoot;

    /* Additional information specific to partition tuple routing */
    //额外的分区元组路由信息
    struct PartitionRoutingInfo *ri_PartitionInfo;
} ResultRelInfo;

PartitionRoutingInfo
PartitionRoutingInfo结构体
分区路由信息,用于将元组路由到表分区的结果关系信息。

/*
 * PartitionRoutingInfo
 * PartitionRoutingInfo - 分区路由信息
 * 
 * Additional result relation information specific to routing tuples to a
 * table partition.
 * 用于将元组路由到表分区的结果关系信息。
 */
typedef struct PartitionRoutingInfo
{
    /*
     * Map for converting tuples in root partitioned table format into
     * partition format, or NULL if no conversion is required.
     * 映射,用于将根分区表格式的元组转换为分区格式,如果不需要转换,则转换为NULL。
     */
    TupleConversionMap *pi_RootToPartitionMap;

    /*
     * Map for converting tuples in partition format into the root partitioned
     * table format, or NULL if no conversion is required.
     * 映射,用于将分区格式的元组转换为根分区表格式,如果不需要转换,则转换为NULL。
     */
    TupleConversionMap *pi_PartitionToRootMap;

    /*
     * Slot to store tuples in partition format, or NULL when no translation
     * is required between root and partition.
     * 以分区格式存储元组的slot.在根分区和分区之间不需要转换时为NULL。
     */
    TupleTableSlot *pi_PartitionTupleSlot;
} PartitionRoutingInfo;

TupleConversionMap
TupleConversionMap结构体,用于存储元组转换映射信息.

typedef struct TupleConversionMap
{
    TupleDesc   indesc;         /* 源行类型的描述符;tupdesc for source rowtype */
    TupleDesc   outdesc;        /* 结果行类型的描述符;tupdesc for result rowtype */
    AttrNumber *attrMap;        /* 输入字段的索引信息,0表示NULL;indexes of input fields, or 0 for null */
    Datum      *invalues;       /* 析构源数据的工作空间;workspace for deconstructing source */
    bool       *inisnull;       //是否为NULL标记数组
    Datum      *outvalues;      /* 构造结果的工作空间;workspace for constructing result */
    bool       *outisnull;      //null标记
} TupleConversionMap;

二、源码解读

ExecPrepareTupleRouting函数确定要插入slot中的tuple所属的分区,同时修改mtstate和estate等相关信息,为后续实际的插入作准备。

/*
 * ExecPrepareTupleRouting --- prepare for routing one tuple
 * ExecPrepareTupleRouting --- 为路由一个元组做准备
 * 
 * Determine the partition in which the tuple in slot is to be inserted,
 * and modify mtstate and estate to prepare for it.
 * 确定要插入slot中tuple的分区,并修改mtstate和estate以为插入作准备。
 *
 * Caller must revert the estate changes after executing the insertion!
 * In mtstate, transition capture changes may also need to be reverted.
 * 调用方必须在执行插入之后恢复estate中被修改的属性值!
 * 在mtstate中,转换捕获更改也可能需要恢复。
 *
 * Returns a slot holding the tuple of the partition rowtype.
 * 返回包含分区rowtype元组的槽位。
 */
static TupleTableSlot *
ExecPrepareTupleRouting(ModifyTableState *mtstate,
                        EState *estate,
                        PartitionTupleRouting *proute,
                        ResultRelInfo *targetRelInfo,
                        TupleTableSlot *slot)
{
    ModifyTable *node;//ModifyTable节点
    int         partidx;//分区索引
    ResultRelInfo *partrel;//ResultRelInfo结构体指针(数组)
    HeapTuple   tuple;//元组

    /*
     * Determine the target partition.  If ExecFindPartition does not find a
     * partition after all, it doesn't return here; otherwise, the returned
     * value is to be used as an index into the arrays for the ResultRelInfo
     * and TupleConversionMap for the partition.
     * 确定目标分区。
     * 如果ExecFindPartition最终没有找到分区,它不会在这里返回;
     * 否则,返回值将用作分区的ResultRelInfo和TupleConversionMap数组的索引。
     */
    partidx = ExecFindPartition(targetRelInfo,
                                proute->partition_dispatch_info,
                                slot,
                                estate);
    Assert(partidx >= 0 && partidx < proute->num_partitions);

    /*
     * Get the ResultRelInfo corresponding to the selected partition; if not
     * yet there, initialize it.
     * 获取与所选分区对应的ResultRelInfo;如果还没有,则初始化。
     */
    partrel = proute->partitions[partidx];
    if (partrel == NULL)
        partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,
                                        proute, estate,
                                        partidx);

    /*
     * Check whether the partition is routable if we didn't yet
     * 检查分区是否可路由
     * 
     * Note: an UPDATE of a partition key invokes an INSERT that moves the
     * tuple to a new partition.  This check would be applied to a subplan
     * partition of such an UPDATE that is chosen as the partition to route
     * the tuple to.  The reason we do this check here rather than in
     * ExecSetupPartitionTupleRouting is to avoid aborting such an UPDATE
     * unnecessarily due to non-routable subplan partitions that may not be
     * chosen for update tuple movement after all.
     * 注意:分区键的更新调用将元组移动到新分区的插入。
     * 此检查将应用于此类更新的子计划分区,该分区被选择为将元组路由到的分区。
     * 在这里而不是在ExecSetupPartitionTupleRouting中执行此检查的原因是
         为了避免由于无法路由的子计划分区而不必要地中止这样的更新,这些分区可能最终不会被选择用于更新元组移动。
     */
    if (!partrel->ri_PartitionReadyForRouting)
    {
        /* Verify the partition is a valid target for INSERT. */
        //验证分区是否可用于INSERT
        CheckValidResultRel(partrel, CMD_INSERT);

        /* Set up information needed for routing tuples to the partition. */
        //设置将元组路由到分区所需的信息。
        ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);
    }

    /*
     * Make it look like we are inserting into the partition.
     * 让它看起来像是插入到分区中。
     */
    estate->es_result_relation_info = partrel;

    /* Get the heap tuple out of the given slot. */
    //从给定的slot中获取heap tuple
    tuple = ExecMaterializeSlot(slot);

    /*
     * If we're capturing transition tuples, we might need to convert from the
     * partition rowtype to parent rowtype.
     * 如果正在捕获转换元组,可能需要将分区行类型转换为根分区表的行类型。
     */
    if (mtstate->mt_transition_capture != NULL)
    {
        if (partrel->ri_TrigDesc &&
            partrel->ri_TrigDesc->trig_insert_before_row)
        {
            /*
             * If there are any BEFORE triggers on the partition, we'll have
             * to be ready to convert their result back to tuplestore format.
             * 如果分区上有BEFORE触发器,必须准备将它们的结果转换回tuplestore格式。
             */
            mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
            mtstate->mt_transition_capture->tcs_map =
                TupConvMapForLeaf(proute, targetRelInfo, partidx);
        }
        else
        {
            /*
             * Otherwise, just remember the original unconverted tuple, to
             * avoid a needless round trip conversion.
             * 否则,只需记住原始的未转换元组,以避免不必要的来回转换。
             */
            mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;
            mtstate->mt_transition_capture->tcs_map = NULL;
        }
    }
    if (mtstate->mt_oc_transition_capture != NULL)
    {
        mtstate->mt_oc_transition_capture->tcs_map =
            TupConvMapForLeaf(proute, targetRelInfo, partidx);
    }

    /*
     * Convert the tuple, if necessary.
     * 如需要,转换元组
     */
    ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
                              tuple,
                              proute->partition_tuple_slot,
                              &slot);

    /* Initialize information needed to handle ON CONFLICT DO UPDATE. */
    //如为ON CONFLICT DO UPDATE模式,则初始化相关信息
    Assert(mtstate != NULL);
    node = (ModifyTable *) mtstate->ps.plan;
    if (node->onConflictAction == ONCONFLICT_UPDATE)
    {
        Assert(mtstate->mt_existing != NULL);
        ExecSetSlotDescriptor(mtstate->mt_existing,
                              RelationGetDescr(partrel->ri_RelationDesc));
        Assert(mtstate->mt_conflproj != NULL);
        ExecSetSlotDescriptor(mtstate->mt_conflproj,
                              partrel->ri_onConflict->oc_ProjTupdesc);
    }

    return slot;
}

/*
 * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
 * ExecFetchSlotHeapTuple - 根据slot提取HeapTuple
 *
 * The returned HeapTuple represents the slot's content as closely as
 * possible.
 * 返回的HeapTuple尽可能就是slot的内容。
 * 
 * If materialize is true, the contents of the slots will be made independent
 * from the underlying storage (i.e. all buffer pins are release, memory is
 * allocated in the slot's context).
 * 如果materialize为T,slot的内容将独立于底层存储(即释放所有缓冲区pin,在slot的上下文中分配内存)。
 *
 * If shouldFree is not-NULL it'll be set to true if the returned tuple has
 * been allocated in the calling memory context, and must be freed by the
 * caller (via explicit pfree() or a memory context reset).
 * 如果shouldFree not-NULL,那么如果返回的元组已经在调用内存上下文中分配,
 *   并且必须由调用方释放(通过显式pfree()或内存上下文重置)。
 *
 * NB: If materialize is true, modifications of the returned tuple are
 * allowed. But it depends on the type of the slot whether such modifications
 * will also affect the slot's contents. While that is not the nicest
 * behaviour, all such modifcations are in the process of being removed.
 * 注意:如果materialize为T,则允许修改返回的元组。
 * 但这取决于slot的类型,这种修改是否也会影响slot的内容。
 * 虽然这不是最好的行为,但所有这些修改都在被移除的过程中。
 */
HeapTuple
ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
{
    /*
     * sanity checks
     * 安全检查
     */
    Assert(slot != NULL);
    Assert(!TTS_EMPTY(slot));

    /* Materialize the tuple so that the slot "owns" it, if requested. */
    //物化元组,以便slot“拥有”它(如要求)。
    if (materialize)
        slot->tts_ops->materialize(slot);

    if (slot->tts_ops->get_heap_tuple == NULL)
    {
        if (shouldFree)
            *shouldFree = true;
        return slot->tts_ops->copy_heap_tuple(slot);//返回slot拷贝
    }
    else
    {
        if (shouldFree)
            *shouldFree = false;
        return slot->tts_ops->get_heap_tuple(slot);//直接返回slot
    }
}

三、跟踪分析

测试脚本如下

-- Hash Partition
drop table if exists t_hash_partition;
create table t_hash_partition (c1 int not null,c2  varchar(40),c3 varchar(40)) partition by hash(c1);
create table t_hash_partition_1 partition of t_hash_partition for values with (modulus 6,remainder 0);
create table t_hash_partition_2 partition of t_hash_partition for values with (modulus 6,remainder 1);
create table t_hash_partition_3 partition of t_hash_partition for values with (modulus 6,remainder 2);
create table t_hash_partition_4 partition of t_hash_partition for values with (modulus 6,remainder 3);
create table t_hash_partition_5 partition of t_hash_partition for values with (modulus 6,remainder 4);
create table t_hash_partition_6 partition of t_hash_partition for values with (modulus 6,remainder 5);

-- delete from t_hash_partition where c1 = 0;
insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');

启动gdb,设置断点,进入ExecPrepareTupleRouting

(gdb) b ExecPrepareTupleRouting
Breakpoint 1 at 0x710b1e: file nodeModifyTable.c, line 1712.
(gdb) c
Continuing.

Breakpoint 1, ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48, 
    slot=0x1e4e4e0) at nodeModifyTable.c:1712
1712        partidx = ExecFindPartition(targetRelInfo,

查看函数调用栈
ExecPrepareTupleRouting在ExecModifyTable Node中被调用,为后续的插入作准备.

(gdb) bt
#0  ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48, slot=0x1e4e4e0)
    at nodeModifyTable.c:1712
#1  0x0000000000711602 in ExecModifyTable (pstate=0x1e4de60) at nodeModifyTable.c:2157
#2  0x00000000006e4c30 in ExecProcNodeFirst (node=0x1e4de60) at execProcnode.c:445
#3  0x00000000006d9974 in ExecProcNode (node=0x1e4de60) at ../../../src/include/executor/executor.h:237
#4  0x00000000006dc22d in ExecutePlan (estate=0x1e4daf8, planstate=0x1e4de60, use_parallel_mode=false, 
    operation=CMD_INSERT, sendTuples=false, numberTuples=0, direction=ForwardScanDirection, dest=0x1e67e90, 
    execute_once=true) at execMain.c:1723
#5  0x00000000006d9f5c in standard_ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0, 
    execute_once=true) at execMain.c:364
#6  0x00000000006d9d7f in ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0, execute_once=true)
    at execMain.c:307
#7  0x00000000008cbdb3 in ProcessQuery (plan=0x1e67d18, 
    sourceText=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');", params=0x0, queryEnv=0x0, 
    dest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:161
#8  0x00000000008cd6f9 in PortalRunMulti (portal=0x1dc6538, isTopLevel=true, setHoldSnapshot=false, dest=0x1e67e90, 
    altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:1286
#9  0x00000000008cccb9 in PortalRun (portal=0x1dc6538, count=9223372036854775807, isTopLevel=true, run_once=true, 
    dest=0x1e67e90, altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:799
#10 0x00000000008c6b1e in exec_simple_query (
    query_string=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');") at postgres.c:1145
#11 0x00000000008cae70 in PostgresMain (argc=1, argv=0x1d8aba8, dbname=0x1d8aa10 "testdb", username=0x1d5dba8 "xdb")
    at postgres.c:4182

找到该元组所在的分区

(gdb) n
1716        Assert(partidx >= 0 && partidx < proute->num_partitions);
(gdb) p partidx
$1 = 2

获取与所选分区对应的ResultRelInfo;如果还没有,则初始化

(gdb) n
1722        partrel = proute->partitions[partidx];
(gdb) 
1723        if (partrel == NULL)
(gdb) p *partrel
Cannot access memory at address 0x0
(gdb) n
1724            partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,

初始化后的partrel

(gdb) p *partrel
$2 = {type = T_ResultRelInfo, ri_RangeTableIndex = 1, ri_RelationDesc = 0x1e7c940, ri_NumIndices = 0, 
  ri_IndexRelationDescs = 0x0, ri_IndexRelationInfo = 0x0, ri_TrigDesc = 0x0, ri_TrigFunctions = 0x0, 
  ri_TrigWhenExprs = 0x0, ri_TrigInstrument = 0x0, ri_FdwRoutine = 0x0, ri_FdwState = 0x0, ri_usesFdwDirectModify = false, 
  ri_WithCheckOptions = 0x0, ri_WithCheckOptionExprs = 0x0, ri_ConstraintExprs = 0x0, ri_junkFilter = 0x0, 
  ri_returningList = 0x0, ri_projectReturning = 0x0, ri_onConflictArbiterIndexes = 0x0, ri_onConflict = 0x0, 
  ri_PartitionCheck = 0x1e4f538, ri_PartitionCheckExpr = 0x0, ri_PartitionRoot = 0x1e7c2f8, 
  ri_PartitionReadyForRouting = true}

目标分区描述符-->t_hash_partition_3

(gdb) p *partrel->ri_RelationDesc
$3 = {rd_node = {spcNode = 1663, dbNode = 16402, relNode = 16995}, rd_smgr = 0x1e34510, rd_refcnt = 1, rd_backend = -1, 
  rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true, rd_indexvalid = 0 '\000', rd_statvalid = false, 
  rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x1e7c1e0, rd_att = 0x1e7cb58, rd_id = 16995, rd_lockInfo = {
    lockRelId = {relId = 16995, dbId = 16402}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0, rd_rsdesc = 0x0, 
  rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x0, rd_partkey = 0x0, rd_pdcxt = 0x0, rd_partdesc = 0x0, 
  rd_partcheck = 0x1e7aa30, rd_indexlist = 0x0, rd_oidindex = 0, rd_pkindex = 0, rd_replidindex = 0, rd_statlist = 0x0, 
  rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0, rd_pkattr = 0x0, rd_idattr = 0x0, rd_projidx = 0x0, 
  rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0, rd_amhandler = 0, rd_indexcxt = 0x0, 
  rd_amroutine = 0x0, rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0, rd_supportinfo = 0x0, rd_indoption = 0x0, 
  rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0, rd_exclstrats = 0x0, rd_amcache = 0x0, 
  rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x1de40b0}
------------------
testdb=# select oid,relname from pg_class where oid=16995;
  oid  |      relname       
-------+--------------------
 16995 | t_hash_partition_3
(1 row)  
-----------------

该分区是可路由的

(gdb) p partrel->ri_PartitionReadyForRouting
$4 = true

设置estate变量(让它看起来像是插入到分区中)/物化tuple

(gdb) n
1751        estate->es_result_relation_info = partrel;
(gdb) 
1754        tuple = ExecMaterializeSlot(slot);
(gdb) 
1760        if (mtstate->mt_transition_capture != NULL)
(gdb) p tuple
$5 = (HeapTuple) 0x1e4f4e0
(gdb) p *tuple
$6 = {t_len = 40, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 0, t_data = 0x1e4f4f8}
(gdb) 
(gdb) p *tuple->t_data
$7 = {t_choice = {t_heap = {t_xmin = 160, t_xmax = 4294967295, t_field3 = {t_cid = 2249, t_xvac = 2249}}, t_datum = {
      datum_len_ = 160, datum_typmod = -1, datum_typeid = 2249}}, t_ctid = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, 
    ip_posid = 0}, t_infomask2 = 3, t_infomask = 2, t_hoff = 24 '\030', t_bits = 0x1e4f50f ""}

mtstate->mt_transition_capture 为NULL,无需处理相关信息

(gdb) p mtstate->mt_transition_capture 
$8 = (struct TransitionCaptureState *) 0x0
1783        if (mtstate->mt_oc_transition_capture != NULL)
(gdb)

如需要,转换元组

1792        ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
(gdb) 
1798        Assert(mtstate != NULL);
(gdb) 
1799        node = (ModifyTable *) mtstate->ps.plan;
(gdb) p *mtstate
$9 = {ps = {type = T_ModifyTableState, plan = 0x1e59838, state = 0x1e4daf8, ExecProcNode = 0x711056 , 
    ExecProcNodeReal = 0x711056 , instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, 
    qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, 
    ps_ResultTupleSlot = 0x1e4ede8, ps_ExprContext = 0x0, ps_ProjInfo = 0x0, scandesc = 0x0}, operation = CMD_INSERT, 
  canSetTag = true, mt_done = false, mt_plans = 0x1e4e078, mt_nplans = 1, mt_whichplan = 0, resultRelInfo = 0x1e4dd48, 
  rootResultRelInfo = 0x0, mt_arowmarks = 0x1e4e098, mt_epqstate = {estate = 0x0, planstate = 0x0, origslot = 0x1e4e4e0, 
    plan = 0x1e59588, arowMarks = 0x0, epqParam = 0}, fireBSTriggers = false, mt_existing = 0x0, mt_excludedtlist = 0x0, 
  mt_conflproj = 0x0, mt_partition_tuple_routing = 0x1e4eb48, mt_transition_capture = 0x0, mt_oc_transition_capture = 0x0, 
  mt_per_subplan_tupconv_maps = 0x0}

返回slot,完成调用

(gdb) n
1800        if (node->onConflictAction == ONCONFLICT_UPDATE)
(gdb) 
1810        return slot;
(gdb) 
1811    }

到此,相信大家对“怎么理解PostgreSQL的分区表”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


新闻名称:怎么理解PostgreSQL的分区表
当前链接:http://scpingwu.com/article/jgddpe.html