通过Hive查询HBase
线上的zipkin的存储是利用的HBase0.94.6,一开始Dev想直接写MR来做离线分析,后来聊了下发现走Hive会提高开发的效率(当然,这里查询HBase的SQL接口还有phoenix,Impala等,只不过都还不够成熟,并且是离线分析不是adhocquery,BTW,前阶段和intel的聊过他们的Hive Over HBase是跳过MR的,效率非常赞,不过钱也略贵了=.=);
潜江ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
其实用Hive查询HBase非常简单:
//首先在HBase里建一张表并插入几条数据 hbase(main):003:0> create 'table_inhbase','cf' 0 row(s) in 1.2060 seconds => Hbase::Table - table_inhbase hbase(main):004:0> list TABLE table_inhbase 1 row(s) in 0.0350 seconds hbase(main):005:0> put 'table_inhbase','row1','cf:a','value1' 0 row(s) in 0.0830 seconds hbase(main):006:0> put 'table_inhbase','row2','cf:a','value2' 0 row(s) in 0.0200 seconds hbase(main):007:0> put 'table_inhbase','row3','cf:b','value3' 0 row(s) in 0.0180 seconds hbase(main):008:0> scan 'table_inhbase' ROW COLUMN+CELL row1 column=cf:a, timestamp=1383736436773,value=value1 row2 column=cf:a, timestamp=1383736462917,value=value2 row3 column=cf:b, timestamp=1383736476017,value=value3 3 row(s) in 0.0660 seconds //在Hive里创建一个外部表,注意要在hive-site.xml加入ZK,否则会hang住,一直去重试localhost:2181 CREATE EXTERNAL TABLE ext_table_inhbase(key string, avalue string,bvaluestring) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" ="cf:a,cf:b") TBLPROPERTIES("hbase.table.name" = "table_inhbase"); hive> CREATE EXTERNAL TABLE ext_table_inhbase(key string, avaluestring,bvalue string) > STORED BY'org.apache.hadoop.hive.hbase.HBaseStorageHandler' > WITH SERDEPROPERTIES("hbase.columns.mapping" = "cf:a,cf:b") > TBLPROPERTIES("hbase.table.name" ="table_inhbase"); OK //注意,这里要加入这2个jar包:hbase-0.94.6-cdh5.4.0.jar,hive-hbase-handler-0.10.0-cdh5.4.0.jar否则会抛出异常 hive> select * from ext_table_inhbase; OK row1 value1 NULL row2 value2 NULL row3 NULL value3 Time taken: 0.609 seconds hive> select key,avalue from ext_table_inhbase; java.io.IOException: Cannot create an instance of InputSplit.apache.hadoop.hive.hbase.HBaseSplit:Classorg.apache.hadoop.hive.hbase.HBaseSplit not found at org.apache.hadoop.hive.ql.io.HiveInputFormat$HiveInputSplit.readFields(HiveInputFormat.java:146) atorg.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:73) atorg.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:44) atorg.apache.hadoop.mapred.MapTask.getSplitDetails(MapTask.java:356) atorg.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:388) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:332) atorg.apache.hadoop.mapred.Child$4.run(Child.java:268) atjava.security.AccessController.doPrivileged(Native Method) atjavax.security.auth.Subject.doAs(Subject.java:396) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408) hive> select key,avalue from ext_table_inhbase; Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks is set to 0 since there's no reduce operator Hadoop job information for Stage-1: number of mappers: 1; number ofreducers: 0 19:33:55,386 Stage-1 map = 0%, reduce = 0% 19:34:01,472 Stage-1 map = 100%, reduce = 0%, CumulativeCPU 2.73 sec 19:34:02,495 Stage-1 map = 100%, reduce = 0%, CumulativeCPU 2.73 sec 19:34:03,512 Stage-1 map = 100%, reduce = 100%,Cumulative CPU 2.73 sec MapReduce Total cumulative CPU time: 2 seconds 730 msec Ended Job = job_201311061424_0003 MapReduce Jobs Launched: Job 0: Map: 1 Cumulative CPU: 2.73 sec HDFS Read:255 HDFS Write: 39 SUCCESS Total MapReduce CPU Time Spent: 2 seconds 730 msec OK row1 value1 row2 value2 //尝试通过HiveServer去查询 beeline> !connect jdbc:hive2://test-2:10000 hdfs hdfsorg.apache.hive.jdbc.HiveDriver Connecting to jdbc:hive2://test-2:10000 Connected to: Hive (version 0.10.0) Driver: Hive (version 0.10.0-cdh5.4.0) Transaction isolation: TRANSACTION_REPEATABLE_READ 0: jdbc:hive2://test-2:10000> show databases; +----------------+ | database_name | +----------------+ | default | +----------------+ 1 row selected (1.483 seconds) 0: jdbc:hive2://test-2:10000> show tables; +--------------------+ | tab_name | +--------------------+ | ext_table_inhbase | |test | +--------------------+ 2 rows selected (0.657 seconds) 0: jdbc:hive2://test-2:10000> select count(*) from ext_table_inhbase; +------+ | _c0 | +------+ | 3 | +------+
当前标题:通过Hive查询HBase
文章转载:http://scpingwu.com/article/jepsjs.html