RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
PyTorch如何搭建一维线性回归模型-创新互联

这篇文章主要介绍了PyTorch如何搭建一维线性回归模型,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

创新互联建站专注于桐城企业网站建设,成都响应式网站建设,商城建设。桐城网站建设公司,为桐城等地区提供建站服务。全流程按需定制设计,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务

PyTorch搭建一维线性回归模型

1)一维线性回归模型的理论基础

给定数据集PyTorch如何搭建一维线性回归模型,线性回归希望能够优化出一个好的函数PyTorch如何搭建一维线性回归模型,使得PyTorch如何搭建一维线性回归模型能够和PyTorch如何搭建一维线性回归模型尽可能接近。

如何才能学习到参数PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型呢?很简单,只需要确定如何衡量PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型之间的差别,我们一般通过损失函数(Loss Funciton)来衡量:PyTorch如何搭建一维线性回归模型。取平方是因为距离有正有负,我们于是将它们变为全是正的。这就是著名的均方误差。我们要做的事情就是希望能够找到PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型,使得:

PyTorch如何搭建一维线性回归模型

PyTorch如何搭建一维线性回归模型

均方差误差非常直观,也有着很好的几何意义,对应了常用的欧式距离。现在要求解这个连续函数的最小值,我们很自然想到的方法就是求它的偏导数,让它的偏导数等于0来估计它的参数,即:

PyTorch如何搭建一维线性回归模型

PyTorch如何搭建一维线性回归模型

求解以上两式,我们就可以得到最优解。

2)代码实现

首先,我们需要“制造”出一些数据集:

import torch
import matplotlib.pyplot as plt
 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 3*x + 10 + torch.rand(x.size())
# 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音
 
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

我们想要拟合的一维回归模型是PyTorch如何搭建一维线性回归模型。上面制造的数据集也是比较接近这个模型的,但是为了达到学习效果,人为地加上了torch.rand()值增加一些干扰。

上面人为制造出来的数据集的分布如下:

PyTorch如何搭建一维线性回归模型

有了数据,我们就要开始定义我们的模型,这里定义的是一个输入层和输出层都只有一维的模型,并且使用了“先判断后使用”的基本结构来合理使用GPU加速。

class LinearRegression(nn.Module):
  def __init__(self):
    super(LinearRegression, self).__init__()
    self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
  def forward(self, x):
    out = self.linear(x)
    return out
 
if torch.cuda.is_available():
  model = LinearRegression().cuda()
else:
  model = LinearRegression()

然后我们定义出损失函数和优化函数,这里使用均方误差作为损失函数,使用梯度下降进行优化:

criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

接下来,开始进行模型的训练。

num_epochs = 1000
for epoch in range(num_epochs):
  if torch.cuda.is_available():
    inputs = Variable(x).cuda()
    target = Variable(y).cuda()
  else:
    inputs = Variable(x)
    target = Variable(y)
 
  # 向前传播
  out = model(inputs)
  loss = criterion(out, target)
 
  # 向后传播
  optimizer.zero_grad() # 注意每次迭代都需要清零
  loss.backward()
  optimizer.step()
 
  if (epoch+1) %20 == 0:
    print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0]))

首先定义了迭代的次数,这里为1000次,先向前传播计算出损失函数,然后向后传播计算梯度,这里需要注意的是,每次计算梯度前都要记得将梯度归零,不然梯度会累加到一起造成结果不收敛。为了便于看到结果,每隔一段时间输出当前的迭代轮数和损失函数。

接下来,我们通过model.eval()函数将模型变为测试模式,然后将数据放入模型中进行预测。最后,通过画图工具matplotlib看一下我们拟合的结果,代码如下:

model.eval()
if torch.cuda.is_available():
  predict = model(Variable(x).cuda())
  predict = predict.data.cpu().numpy()
else:
  predict = model(Variable(x))
  predict = predict.data.numpy()
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data')
plt.plot(x.numpy(), predict, label='Fitting Line')
plt.show()

其拟合结果如下图:

PyTorch如何搭建一维线性回归模型

附上完整代码:

# !/usr/bin/python
# coding: utf8
# @Time  : 2018-07-28 18:40
# @Author : Liam
# @Email  : luyu.real@qq.com
# @Software: PyCharm
#            .::::.
#           .::::::::.
#           :::::::::::
#         ..:::::::::::'
#        '::::::::::::'
#         .::::::::::
#      '::::::::::::::..
#         ..::::::::::::.
#        ``::::::::::::::::
#        ::::``:::::::::'    .:::.
#        ::::'  ':::::'    .::::::::.
#       .::::'   ::::   .:::::::'::::.
#      .:::'    ::::: .:::::::::' ':::::.
#      .::'    :::::.:::::::::'   ':::::.
#     .::'     ::::::::::::::'     ``::::.
#   ...:::      ::::::::::::'       ``::.
#   ```` ':.     ':::::::::'         ::::..
#            '.:::::'          ':'````..
#           美女保佑 永无BUG
 
import torch
from torch.autograd import Variable
import numpy as np
import random
import matplotlib.pyplot as plt
from torch import nn
 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 3*x + 10 + torch.rand(x.size())
# 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音
 
# 画图
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
class LinearRegression(nn.Module):
  def __init__(self):
    super(LinearRegression, self).__init__()
    self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
  def forward(self, x):
    out = self.linear(x)
    return out
 
if torch.cuda.is_available():
  model = LinearRegression().cuda()
else:
  model = LinearRegression()
 
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
 
num_epochs = 1000
for epoch in range(num_epochs):
  if torch.cuda.is_available():
    inputs = Variable(x).cuda()
    target = Variable(y).cuda()
  else:
    inputs = Variable(x)
    target = Variable(y)
 
  # 向前传播
  out = model(inputs)
  loss = criterion(out, target)
 
  # 向后传播
  optimizer.zero_grad() # 注意每次迭代都需要清零
  loss.backward()
  optimizer.step()
 
  if (epoch+1) %20 == 0:
    print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0]))
model.eval()
if torch.cuda.is_available():
  predict = model(Variable(x).cuda())
  predict = predict.data.cpu().numpy()
else:
  predict = model(Variable(x))
  predict = predict.data.numpy()
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data')
plt.plot(x.numpy(), predict, label='Fitting Line')
plt.show()

感谢你能够认真阅读完这篇文章,希望小编分享的“PyTorch如何搭建一维线性回归模型”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


网站栏目:PyTorch如何搭建一维线性回归模型-创新互联
当前URL:http://scpingwu.com/article/jegoi.html