RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
C++二叉搜索树实例分析

本篇内容介绍了“C++二叉搜索树实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

专注于为中小企业提供成都网站设计、网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业张家口免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

独一无二的二叉搜索树

Given an integer n, generate all structurally unique BST"s (binary search trees) that store values 1 ... n.

Example:

Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST"s shown below:

   1         3     3      2      1
       /     /      /      
3     2     1      1   3      2
/     /                       
2     1         2                 3

这道题是之前的 Unique Binary Search Trees 的延伸,之前那个只要求算出所有不同的二叉搜索树的个数,这道题让把那些二叉树都建立出来。这种建树问题一般来说都是用递归来解,这道题也不例外,划分左右子树,递归构造。这个其实是用到了大名鼎鼎的分治法 Divide and Conquer,类似的题目还有之前的那道 Different Ways to Add Parentheses 用的方法一样,用递归来解,划分左右两个子数组,递归构造。刚开始时,将区间 [1, n] 当作一个整体,然后需要将其中的每个数字都当作根结点,其划分开了左右两个子区间,然后分别调用递归函数,会得到两个结点数组,接下来要做的就是从这两个数组中每次各取一个结点,当作当前根结点的左右子结点,然后将根结点加入结果 res 数组中即可,参见代码如下:

解法一:

class Solution {
public:
    vector generateTrees(int n) {
        if (n == 0) return {};
        return helper(1, n);
    }
    vector helper(int start, int end) {
        if (start > end) return {nullptr};
        vector res;
        for (int i = start; i <= end; ++i) {
            auto left = helper(start, i - 1), right = helper(i + 1, end);
            for (auto a : left) {
                for (auto b : right) {
                    TreeNode *node = new TreeNode(i);
                    node->left = a;
                    node->right = b;
                    res.push_back(node);
                }
            }
        }
        return res;
    }
};

我们可以使用记忆数组来优化,保存计算过的中间结果,从而避免重复计算。注意这道题的标签有一个是动态规划 Dynamic Programming,其实带记忆数组的递归形式就是 DP 的一种,memo[i][j] 表示在区间 [i, j] 范围内可以生成的所有 BST 的根结点,所以 memo 必须是一个三维数组,这样在递归函数中,就可以去 memo 中查找当前的区间是否已经计算过了,是的话,直接返回 memo 中的数组,否则就按之前的方法去计算,最后计算好了之后要更新 memo 数组,参见代码如下:

解法二:

class Solution {
public:
    vector generateTrees(int n) {
        if (n == 0) return {};
        vector>> memo(n, vector>(n));
        return helper(1, n, memo);
    }
    vector helper(int start, int end, vector>>& memo) {
        if (start > end) return {nullptr};
        if (!memo[start - 1][end - 1].empty()) return memo[start - 1][end - 1];
        vector res;
        for (int i = start; i <= end; ++i) {
            auto left = helper(start, i - 1, memo), right = helper(i + 1, end, memo);
            for (auto a : left) {
                for (auto b : right) {
                    TreeNode *node = new TreeNode(i);
                    node->left = a;
                    node->right = b;
                    res.push_back(node);
                }
            }
        }
        return memo[start - 1][end - 1] = res;
    }
};

“C++二叉搜索树实例分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


网页标题:C++二叉搜索树实例分析
本文网址:http://scpingwu.com/article/ipdoeg.html