怎么使用Elasticsearch中的Match_phrase查询
本篇内容主要讲解“怎么使用Elasticsearch中的Match_phrase查询”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用Elasticsearch中的Match_phrase查询”吧!
创新互联于2013年开始,先为田东等服务建站,田东等地企业,进行企业商务咨询服务。为田东企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
数据准备阶段
新建索引: PUT test_phrase 设置索引mapping: PUT /test_phrase/_mapping/_doc { "properties": { "name": { "type":"text" } } } 结果: { "mapping": { "_doc": { "properties": { "name": { "type": "text" } } } } } 插入数据: PUT test_phrase/_doc/2 { "name":"我爱北京天安门" } 查询数据: POST test_phrase/_search { "query": {"match_all": {}} } 结果: { "took" : 3, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 2, "max_score" : 1.0, "hits" : [ { "_index" : "test_phrase", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "_source" : { "name" : "我爱北京天安门" } }, { "_index" : "test_phrase", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "name" : "王乃康" } } ] } } 查看分词词项: POST test_phrase/_analyze { "field": "name", "text": "我爱北京天安门" } 结果: { "tokens" : [ { "token" : "我", "start_offset" : 0, "end_offset" : 1, "type" : "", "position" : 0 }, { "token" : "爱", "start_offset" : 1, "end_offset" : 2, "type" : " ", "position" : 1 }, { "token" : "北", "start_offset" : 2, "end_offset" : 3, "type" : " ", "position" : 2 }, { "token" : "京", "start_offset" : 3, "end_offset" : 4, "type" : " ", "position" : 3 }, { "token" : "天", "start_offset" : 4, "end_offset" : 5, "type" : " ", "position" : 4 }, { "token" : "安", "start_offset" : 5, "end_offset" : 6, "type" : " ", "position" : 5 }, { "token" : "门", "start_offset" : 6, "end_offset" : 7, "type" : " ", "position" : 6 } ] }
测试阶段
1.关键词"我"
POST test_phrase/_search { "query": { "match_phrase": { "name": { "query": "我" } } } } 结果: { "took" : 2, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 1, "max_score" : 0.2876821, "hits" : [ { "_index" : "test_phrase", "_type" : "_doc", "_id" : "2", "_score" : 0.2876821, "_source" : { "name" : "我爱北京天安门" } } ] } } 分析: POST test_phrase/_analyze { "field": "name", "text": "我" } { "tokens" : [ { "token" : "我", "start_offset" : 0, "end_offset" : 1, "type" : "", "position" : 0 } ] } 查询分词"我"的position位置是0,首先文档"我爱北京天安门"的索引分词中有"我"且position为0,符合短语查询的要求,因此可以正确返回。
2.关键词"我爱"
POST test_phrase/_search { "query": { "match_phrase": { "name": { "query": "我爱" } } } } 结果: { "took" : 4, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 1, "max_score" : 0.5753642, "hits" : [ { "_index" : "test_phrase", "_type" : "_doc", "_id" : "2", "_score" : 0.5753642, "_source" : { "name" : "我爱北京天安门" } } ] } } 分析: POST test_phrase/_analyze { "field": "name", "text": "我爱" } { "tokens" : [ { "token" : "我", "start_offset" : 0, "end_offset" : 1, "type" : "", "position" : 0 }, { "token" : "爱", "start_offset" : 1, "end_offset" : 2, "type" : " ", "position" : 1 } ] } 查询分词"我爱"的position分别是"我"-0、"爱"-1,首先索引分词中也存在"我"、"爱"词项,其次"我"-0、"爱"-1的position也服务要求,因此可以正确返回。
3.关键词"我北"
POST test_phrase/_search { "query": { "match_phrase": { "name": { "query": "我北" } } } } 结果: { "took" : 2, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 0, "max_score" : null, "hits" : [ ] } } 分析: POST test_phrase/_analyze { "field": "name", "text": "我北" } { "tokens" : [ { "token" : "我", "start_offset" : 0, "end_offset" : 1, "type" : "", "position" : 0 }, { "token" : "北", "start_offset" : 1, "end_offset" : 2, "type" : " ", "position" : 1 } ] } 查询分词中"我"的position是0,"北"的position是1,索引分词中"我"的position是0,"北"的position是2, 虽然查询分词的词项在索引分词的词项中都存在,但是position并未匹配要求,导致搜索结果不能正确返回。 修正:"slop": 1 POST test_phrase/_search { "query": { "match_phrase": { "name": { "query": "我北", "slop": 1 } } } } { "took" : 5, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 1, "max_score" : 0.37229446, "hits" : [ { "_index" : "test_phrase", "_type" : "_doc", "_id" : "2", "_score" : 0.37229446, "_source" : { "name" : "我爱北京天安门" } } ] } }
补充阶段
1.使用邻近度提高相关度
我们可以将一个简单的 match
查询作为一个 must
子句。 这个查询将决定哪些文档需要被包含到结果集中。 我们可以用 minimum_should_match
参数去除长尾。 然后我们可以以 should
子句的形式添加更多特定查询。 每一个匹配成功的都会增加匹配文档的相关度。
GET /my_index/my_type/_search { "query": { "bool": { "must": { "match": { #must 子句从结果集中包含或者排除文档 "title": { "query": "quick brown fox", "minimum_should_match": "30%" } } }, "should": { "match_phrase": { #should 子句增加了匹配到文档的相关度评分。 "title": { "query": "quick brown fox", "slop": 50 } } } } } }
到此,相信大家对“怎么使用Elasticsearch中的Match_phrase查询”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
当前文章:怎么使用Elasticsearch中的Match_phrase查询
URL地址:http://scpingwu.com/article/iioied.html