RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
python对象函数参数,python函数参数为函数

Python的函数和参数

parameter 是函数定义的参数形式

10余年的凌海网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。网络营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整凌海建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“凌海网站设计”,“凌海网站推广”以来,每个客户项目都认真落实执行。

argument 是函数调用时传入的参数实体。

对于函数调用的传参模式,一般有两种:

此外,

也是关键字传参

python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。

通常我们见到的函数是位置和关键字混合的方式。

既可以用关键字又可以用位置调用

这种方式的定义只能使用关键字传参的模式

f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的

网络模块request的request方法的设计

多数的可选参数被设计成可变关键字参数

有多种方法能够为函数定义输出:

非常晦涩

如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。

例子1:

addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。

python里面,函数的默认参数被存在__default__属性中,这是一个元组类型

例子2:

在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。

如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。

例子1中,连续调用addItem('world') 的结果会是

而不是期望的

Python的函数参数总结

import math

a = abs

print(a(-1))

n1 = 255

print(str(hex(n1)))

def my_abs(x):

# 增加了参数的检查

if not isinstance(x, (int, float)):

raise TypeError('bad operand type')

if x = 0:

return x

else:

return -x

print(my_abs(-3))

def nop():

pass

if n1 = 255:

pass

def move(x, y, step, angle=0):

nx = x + step * math.cos(angle)

ny = y - step * math.sin(angle)

return nx, ny

x, y = move(100, 100, 60, math.pi / 6)

print(x, y)

tup = move(100, 100, 60, math.pi / 6)

print(tup)

print(isinstance(tup, tuple))

def quadratic(a, b, c):

k = b * b - 4 * a * c

# print(k)

# print(math.sqrt(k))

if k 0:

print('This is no result!')

return None

elif k == 0:

x1 = -(b / 2 * a)

x2 = x1

return x1, x2

else:

x1 = (-b + math.sqrt(k)) / (2 * a)

x2 = (-b - math.sqrt(k)) / (2 * a)

return x1, x2

print(quadratic(2, 3, 1))

def power(x, n=2):

s = 1

while n 0:

n = n - 1

s = s * x

return s

print(power(2))

print(power(2, 3))

def enroll(name, gender, age=8, city='BeiJing'):

print('name:', name)

print('gender:', gender)

print('age:', age)

print('city:', city)

enroll('elder', 'F')

enroll('android', 'B', 9)

enroll('pythone', '6', city='AnShan')

def add_end(L=[]):

L.append('end')

return L

print(add_end())

print(add_end())

print(add_end())

def add_end_none(L=None):

if L is None:

L = []

L.append('END')

return L

print(add_end_none())

print(add_end_none())

print(add_end_none())

def calc(*nums):

sum = 0

for n in nums:

sum = sum + n * n

return sum

print(calc(1, 2, 3))

print(calc())

l = [1, 2, 3, 4]

print(calc(*l))

def foo(x, y):

print('x is %s' % x)

print('y is %s' % y)

foo(1, 2)

foo(y=1, x=2)

def person(name, age, **kv):

print('name:', name, 'age:', age, 'other:', kv)

person('Elder', '8')

person('Android', '9', city='BeiJing', Edu='人民大学')

extra = {'city': 'Beijing', 'job': 'Engineer'}

person('Jack', 24, **extra)

def person2(name, age, *, city, job):

print(name, age, city, job)

person2('Pthon', 8, city='BeiJing', job='Android Engineer')

def person3(name, age, *other, city='BeiJing', job='Android Engineer'):

print(name, age, other, city, job)

person3('Php', 18, 'test', 1, 2, 3)

person3('Php2', 28, 'test', 1, 2, 3, city='ShangHai', job='Pyhton Engineer')

def test2(a, b, c=0, *args, key=None, **kw):

print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'key=', key, 'kw =', kw)

test2(1, 2, 3, 'a', 'b', 'c', key='key', other='extra')

args = (1, 2, 3, 4)

kw = {'d': 99, 'x': '#'}

test2(*args, **kw)

Python函数的参数类型

Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。

必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:

其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:

执行结果:

可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。

位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:

x,y,z三个参数的的顺序是固定的,并且不能使用关键字:

输出:

在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:

星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。

python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:

来看下面的例子:

python3.8运行:

不能使用关键字参数形式赋值了。

可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):

执行结果:

关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。

执行结果:

上面介绍的参数可以混合使用:

结果:

注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。

强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:。 使用一个星号隔开:

在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。

执行结果:

也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:

执行结果:

在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。

先来看个例子:

执行结果:

l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。

接着看下面的例子:

结果:

l1没有变化!为什么不是[1, 2, 3, 4]呢?

l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:

结果:

下面的代码执行结果又是什么呢?

执行结果:

和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?

可以使用下面的方式:

也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。

本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。

另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。

参考文档:

--THE END--

如何进行处理Python对象参数解析

椋�匦虢�浔嘁氤啥��唇涌獾男问剑�ǔJ褂肞ython的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值,希望本文能够对大家有帮助。Python是用C语言实现的一种脚本语言,本身具有优良的开放性和可扩展性,并提供了方便灵活的应用程序接口(API)。从而使得C/C++程序员能够在各个级别上对Python解释器的功能进行扩展。在使用C/C++对Python进行功能扩展之前,必须首先掌握Python解释所提供的C语言接口。Python是一门面向对象的脚本语言,所有的对象在Python解释器中都被表示成PyObject,PyObject结构包含Python对象的所有成员指针。并且对Python对象的类型信息和引用计数进行维护。在进行Python的扩展编程时,一旦要在C或者C++中对Python对象进行处理,就意味着要维护一个PyObject结构。在Python的C语言扩展接口中,大部分函数都有一个或者多个参数为PyObject指针类型,并且返回值也大都为PyObject指针。为了简化内存管理,Python通过引用计数机制实现了自动的垃圾回收功能,Python中的每个对象都有一个引用计数。用来计数该对象在不同场所分别被引用了多少次。每当引用一次Python对象,相应的引用计数就增1,每当消毁一次Python对象,则相应的引用就减1,只有当引用计数为零时,才真正从内存中删除Python对象。下面的例子说明了Python解释器如何利用引用计数来对Pyhon对象进行管理:#include PyObject* wrap_fact(PyObject* self, PyObject* args) { int n, result; if (! PyArg_ParseTuple(args, "i:fact", n)) return NULL; result = fact(n); return Py_BuildValue("i", result); } static PyMethodDef exampleMethods[] = { {"fact", wrap_fact, METH_VARARGS, "Caculate N!"}, {NULL, NULL} }; void initexample() { PyObject* m; m = Py_InitModule("example", exampleMethods); } 在C/C++中处理Python对象时,对引用计数进行正确的维护是一个关键问题,处理不好将很容易产生内存泄漏。Python的C语言接口提供了一些宏来对引用计数进行维护,最常见的是用Py_INCREF()来增加使Python对象的引用计数增1,用Py_DECREF()来使Python对象的引用计数减1。该函数是Python解释器和C函数进行交互的接口,带有两个参数:self和args。参数self只在C函数被实现为内联方法(built-in method)时才被用到。通常该参数的值为空(NULL),参数args中包含了Python解释器要传递给C函数的所有参数,通常使用Python的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值。方法列表中的每项由四个部分组成:方法名、导出函数、参数传递方式和方法描述。

python 函数参数的类型

1. 不同类型的参数简述

#这里先说明python函数调用得语法为:

复制代码

代码如下:

func(positional_args,

keyword_args,

*tuple_grp_nonkw_args,

**dict_grp_kw_args)

#为了方便说明,之后用以下函数进行举例

def test(a,b,c,d,e):

print a,b,c,d,e

举个例子来说明这4种调用方式得区别:

复制代码

代码如下:

#

#positional_args方式

test(1,2,3,4,5)

1 2 3 4 5

#这种调用方式的函数处理等价于

a,b,c,d,e = 1,2,3,4,5

print a,b,c,d,e

#

#keyword_args方式

test(a=1,b=3,c=4,d=2,e=1)

1 3 4 2 1

#这种处理方式得函数处理等价于

a=1

b=3

c=4

d=2

e=1

print a,b,c,d,e

#

#*tuple_grp_nonkw_args方式

x = 1,2,3,4,5

test(*x)

1 2 3 4

5

#这种方式函数处理等价于

复制代码

代码如下:

a,b,c,d,e = x

print

a,b,c,d,e

#特别说明:x也可以为dict类型,x为dick类型时将键传递给函数

y

{'a': 1,

'c': 6, 'b': 2, 'e': 1, 'd': 1}

test(*y)

a c b e d

#

#**dict_grp_kw_args方式

y

{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}

test(**y)

1 2 6

1 1

#这种函数处理方式等价于

a = y['a']

b = y['b']

... #c,d,e不再赘述

print

a,b,c,d,e

2.

不同类型参数混用需要注意的一些细节

接下来说明不同参数类型混用的情况,要理解不同参数混用得语法需要理解以下几方面内容.

首先要明白,函数调用使用参数类型必须严格按照顺序,不能随意调换顺序,否则会报错. 如 (a=1,2,3,4,5)会引发错误,;

(*x,2,3)也会被当成非法.

其次,函数对不同方式处理的顺序也是按照上述的类型顺序.因为#keyword_args方式和**dict_grp_kw_args方式对参数一一指定,所以无所谓顺序.所以只需要考虑顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的顺序.因此,可以简单理解为只有#positional_args方式,#*tuple_grp_nonkw_args方式有逻辑先后顺序的.

最后,参数是不允许多次赋值的.

举个例子说明,顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的逻辑先后关系:

复制代码

代码如下:

#只有在顺序赋值,列表赋值在结果上存在罗辑先后关系

#正确的例子1

x =

{3,4,5}

test(1,2,*x)

1 2 3 4 5

#正确的例子2

test(1,e=2,*x)

1 3 4 5 2

#错误的例子

test(1,b=2,*x)

Traceback (most recent call

last):

File "stdin", line 1, in module

TypeError: test()

got multiple values for keyword argument 'b'

#正确的例子1,处理等价于

a,b = 1,2 #顺序参数

c,d,e = x #列表参数

print a,b,c,d,e

#正确的例子2,处理等价于

a = 1 #顺序参数

e = 2 #关键字参数

b,c,d = x #列表参数

#错误的例子,处理等价于

a = 1 #顺序参数

b = 2 #关键字参数

b,c,d = x

#列表参数

#这里由于b多次赋值导致异常,可见只有顺序参数和列表参数存在罗辑先后关系

函数声明区别

理解了函数调用中不同类型参数得区别之后,再来理解函数声明中不同参数得区别就简单很多了.

1. 函数声明中的参数类型说明

函数声明只有3种类型, arg, *arg , **arg 他们得作用和函数调用刚好相反.

调用时*tuple_grp_nonkw_args将列表转换为顺序参数,而声明中的*arg的作用是将顺序赋值(positional_args)转换为列表.

调用时**dict_grp_kw_args将字典转换为关键字参数,而声明中**arg则反过来将关键字参数(keyword_args)转换为字典.

特别提醒:*arg

和 **arg可以为空值.

以下举例说明上述规则:

复制代码

代码如下:

#arg, *arg和**arg作用举例

def

test2(a,*b,**c):

print a,b,c

#

#*arg 和

**arg可以不传递参数

test2(1)

1 () {}

#arg必须传递参数

test2()

Traceback (most recent call last):

File "stdin", line 1,

in module

TypeError: test2() takes at least 1 argument (0 given)

#

#*arg将顺positional_args转换为列表

test2(1,2,[1,2],{'a':1,'b':2})

1 (2, [1, 2], {'a': 1, 'b': 2})

{}

#该处理等价于

a = 1 #arg参数处理

b = 2,[1,2],{'a':1,'b':2} #*arg参数处理

c =

dict() #**arg参数处理

print a,b,c

#

#**arg将keyword_args转换为字典

test2(1,2,3,d={1:2,3:4}, c=12, b=1)

1 (2, 3) {'c': 12, 'b': 1, 'd': {1: 2, 3:

4}}

#该处理等价于

a = 1 #arg参数处理

b= 2,3 #*arg参数处理

#**arg参数处理

c =

dict()

c['d'] = {1:2, 3:4}

c['c'] = 12

c['b'] = 1

print

a,b,c

2. 处理顺序问题

函数总是先处理arg类型参数,再处理*arg和**arg类型的参数.

因为*arg和**arg针对的调用参数类型不同,所以不需要考虑他们得顺序.

复制代码

代码如下:

def test2(a,*b,**c):

print

a,b,c

test2(1, b=[1,2,3], c={1:2, 3:4},a=1)

Traceback (most

recent call last):

File "stdin", line 1, in

module

TypeError: test2() got multiple values for keyword argument

'a'

#这里会报错得原因是,总是先处理arg类型得参数

#该函数调用等价于

#处理arg类型参数:

a = 1

a = 1

#多次赋值,导致异常

#处理其他类型参数

...

print a,b,c

def foo(x,y):

... def bar():

... print

x,y

... return bar

...

#查看func_closure的引用信息

a =

[1,2]

b = foo(a,0)

b.func_closure[0].cell_contents

[1, 2]

b.func_closure[1].cell_contents

b()

[1, 2] 0

#可变对象仍然能被修改

a.append(3)

b.func_closure[0].cell_contents

[1, 2, 3]

b()

[1, 2, 3] 0


新闻名称:python对象函数参数,python函数参数为函数
本文来源:http://scpingwu.com/article/hspcej.html