RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
python所有语法函数 python语法函数定义

Python基本语法都有哪些?

1.关于编码:

创新互联建站主营城子河网站建设的网络公司,主营网站建设方案,重庆APP开发公司,城子河h5小程序制作搭建,城子河网站营销推广欢迎城子河等地区企业咨询

默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串。 当然你也可以为源码文件指定不同的编码:

# -*- coding: cp-1252 -*-

2.标识符:

第一个字符必须是字母表中字母或下划线,其他的部分由字母、数字和下划线组成。

标识符对大小写敏感。

在 Python 3 中,可以用中文作为变量名,非 ASCII 标识符也是允许的了。

3.保留字:

保留字即关键字,我们不能把它们用作任何标识符名称。

Python 的标准库提供了一个 keyword 模块,可以输出当前版本的所有关键字:

代码:

import keyword

keyword.kwlist

结果:

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

4.关于注释:

单行注释以 # 开头

多行注释可以用多个 # 号,还有 ''' 和 """

5.缩进与多行语句:

Python最具特色的就是使用缩进来表示代码块,不需要使用大括号 {} 。

缩进的空格数是可变的,但是同一个代码块的语句必须包含相同的缩进空格数

Python 通常是一行写完一条语句,但如果语句很长,我们可以使用反斜杠(\)来实现多行语句,例如:

代码:total = item_one + \

item_two + \

item_three

在 [], {}, 或 () 中的多行语句,不需要使用反斜杠(\),例如:

代码:total = ['item_one', 'item_two', 'item_three',

'item_four', 'item_five']

6.数字(Number)类型:

Python中数字有四种类型:整数、布尔型、浮点数和复数。

int (整数), 如 1, 只有一种整数类型 int,表示为长整型,没有 python2 中的 Long。

bool (布尔), 如 True。

float (浮点数), 如 1.23、3E-2

complex (复数), 如 1 + 2j、 1.1 + 2.2j

7.字符串:

python中单引号和双引号使用完全相同。

使用三引号('''或""")可以指定一个多行字符串。

转义符 '\'

反斜杠可以用来转义,使用r可以让反斜杠不发生转义。。 如 r"this is a line with \n" 则\n会显示,并不是换行。

按字面意义级联字符串,如"this " "is " "string"会被自动转换为this is string。

字符串可以用 + 运算符连接在一起,用 * 运算符重复。

Python 中的字符串有两种索引方式,从左往右以 0 开始,从右往左以 -1 开始。

Python中的字符串不能改变。

Python 没有单独的字符类型,一个字符就是长度为 1 的字符串。

字符串的截取的语法格式如下:变量[头下标:尾下标:步长]

代码示例:

#!/usr/bin/python3

str='Runoob'

print(str) # 输出字符串

print(str[0:-1]) # 输出第一个到倒数第二个的所有字符

print(str[0]) # 输出字符串第一个字符

print(str[2:5]) # 输出从第三个开始到第五个的字符

print(str[2:]) # 输出从第三个开始后的所有字符

print(str * 2) # 输出字符串两次

print(str + '你好') # 连接字符串

print('hello\nrunoob') # 使用反斜杠(\)+n转义特殊字符

print(r'hello\nrunoob') # 在字符串前面添加一个 r,表示原始字符串,不会发生转义

8.空行:

函数之间或类的方法之间用空行分隔,表示一段新的代码的开始。类和函数入口之间也用一行空行分隔,以突出函数入口的开始。

空行与代码缩进不同,空行并不是Python语法的一部分。书写时不插入空行,Python解释器运行也不会出错。但是空行的作用在于分隔两段不同功能或含义的代码,便于日后代码的维护或重构。

记住:空行也是程序代码的一部分。

9.等待用户输入input:

执行下面的程序在按回车键后就会等待用户输入:

input("\n\n按下 enter 键后退出。")

以上代码中 ,"\n\n"在结果输出前会输出两个新的空行。一旦用户按下 enter 键时,程序将退出。

10.同一行显示多条语句:

Python可以在同一行中使用多条语句,语句之间使用分号(;)分割,以下是一个简单的实例:

import sys; x = 'runoob'; sys.stdout.write(x + '\n')

11.代码组:

缩进相同的一组语句构成一个代码块,我们称之代码组。

像if、while、def和class这样的复合语句,首行以关键字开始,以冒号( : )结束,该行之后的一行或多行代码构成代码组。

我们将首行及后面的代码组称为一个子句(clause)。

12.Print输出:

Print 输出

print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end="":

代码:

x="a"

y="b"

# 换行输出

print( x )

print( y )

# 不换行输出

print( x, end=" " )

print( y, end=" " )

13.import 与 from...import

在 python 用 import 或者 from...import 来导入相应的模块。

将整个模块(somemodule)导入,格式为: import somemodule

从某个模块中导入某个函数,格式为: from somemodule import somefunction

从某个模块中导入多个函数,格式为: from somemodule import firstfunc, secondfunc, thirdfunc

将某个模块中的全部函数导入,格式为: from somemodule import *

代码:

导入 sys 模块

import sys

print ('命令行参数为:')

for i in sys.argv:

print (i)

print ('\n python 路径为',sys.path)

导入 sys 模块的 argv,path 成员

from sys import argv,path # 导入特定的成员

print('path:',path) # 因为已经导入path成员,所以此处引用时不需要加sys.path

14.命令行参数:

很多程序可以执行一些操作来查看一些基本信息,Python可以使用-h参数查看各参数帮助信息:

代码:

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[ etc. ]

15.一个有用的函数:help( )

调用 python 的 help() 函数可以打印输出一个函数的文档字符串:

# 如下实例,查看 max 内置函数的参数列表和规范的文档

help(max)

……显示帮助信息…… 按下 : q 两个按键即退出说明文档

如果仅仅想得到文档字符串:

print(max.__doc__) # 注意,doc的前后分别是两个下划线

max(iterable, *[, default=obj, key=func]) - value

max(arg1, arg2, *args, *[, key=func]) - value

With a single iterable argument, return its biggest item. The

default keyword-only argument specifies an object to return if

the provided iterable is empty.

With two or more arguments, return the largest argument.

python的基本语法

python的语法就是编写python程序时需要遵循的一些规则,以及一些数据的使用方式,python基本语法包括基本数据类型、布尔值、函数、循环语句、条件判断、类、文件操作、模块等。

python语法优点:

简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。

易学:Python极其容易上手,因为Python有极其简单的说明文档。

速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。

免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。

万字干货,Python语法大合集,一篇文章带你入门

这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。

Python中用#表示单行注释,#之后的同行的内容都会被注释掉。

使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。

Python当中的数字定义和其他语言一样:

我们分别使用+, -, *, /表示加减乘除四则运算符。

这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。

但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。

在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。

如果我们想要得到整数,我们可以这么操作:

两个除号表示 取整除 ,Python会为我们保留去除余数的结果。

除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。

Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:

当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。

Python中用首字母大写的True和False表示真和假。

用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是Java当中的, || 和!。

在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。

我们用==判断相等的操作,可以看出来True==1, False == 0.

我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :

Python中用==判断相等,表示大于,=表示大于等于, 表示小于,=表示小于等于,!=表示不等。

我们可以用and和or拼装各个逻辑运算:

注意not,and,or之间的优先级,其中not and or。如果分不清楚的话,可以用括号强行改变运行顺序。

关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:

Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。

显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。

Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。

字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:

我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。

我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。

最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。

理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。

除了上面这些值以外的所有值传入都会得到True。

Python当中的标准输入输出是 input和print 。

print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:

使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:

Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:

上段代码等价于:

Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:

使用append和pop可以在list的末尾插入或者删除元素:

list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。

list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。

如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。

只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。

insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。

list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:

我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:

tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。

由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:

tuple支持list当中绝大部分操作:

我们可以用多个变量来解压一个tuple:

解释一下这行代码:

我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。

补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:

我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:

dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。

对 。我们用{}表示一个dict,用:分隔key和value。

dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:

我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。

我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:

我们也可以用in判断一个key是否在dict当中,注意只能判断key。

如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :

setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:

我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:

我们一样可以使用del删除dict当中的元素,同样只能传入key。

Python3.5以上的版本支持使用**来解压一个dict:

set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。

set当中的元素也必须是不可变对象,因此list不能传入set。

可以调用add方法为set插入元素:

set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。

set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:

和dict一样,我们可以使用in判断元素在不在set当中。用copy可以拷贝一个set。

Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。

我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。

如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:

如果我们传入两个参数,则 代表迭代区间的首尾 。

如果我们传入第三个元素,表示每次 循环变量自增的步长 。

如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :

while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:

Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :

在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。

以下是with的几种用法和功能:

凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:

Python——五分钟带你弄懂迭代器与生成器,夯实代码能力

当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。

我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。

使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:

可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:

也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:

当然我们也可以两个都用上,这样可以接受任何参数:

传入参数的时候我们也可以使用*和**来解压list或者是dict:

Python中的参数 可以返回多个值 :

函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:

Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:

Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:

我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、reduce和filter的使用,具体可以查看之前的文章:

五分钟带你了解map、reduce和filter

我们还可以结合循环和判断语来给list或者是dict进行初始化:

使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。

我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)

可以使用as给模块内的方法或者类起别名:

我们可以使用dir查看我们用的模块的路径:

这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。

我们来看一个完整的类,相关的介绍都在注释当中

以上内容的详细介绍之前也有过相关文章,可以查看:

Python—— slots ,property和对象命名规范

下面我们来看看Python当中类的使用:

这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。

继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。

我们创建一个蝙蝠类:

我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:

执行这个类:

我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:

除了yield之外,我们还可以使用()小括号来生成一个生成器:

关于生成器和迭代器更多的内容,可以查看下面这篇文章:

五分钟带你弄懂迭代器与生成器,夯实代码能力

我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:

装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:

一文搞定Python装饰器,看完面试不再慌

不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。

如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。

根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。

最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............

python 关于函数的语法

这里的QuickSort.count叫做"函数属性function attribute",

python等动态类型语言所具有的"函数同时是头等对象"的功能.

即代码可以往函数对象上灵活地添加某属性。

def f():   

print(f.act)

f.act=123 #定义和添加一个函数对象的属性-函数属性

f() #打印123

之前的快速排序用了一个count属性在记录排序算法的比较次数。属于调试显示,不是排序的核心算法..

Python的函数和参数

parameter 是函数定义的参数形式

argument 是函数调用时传入的参数实体。

对于函数调用的传参模式,一般有两种:

此外,

也是关键字传参

python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。

通常我们见到的函数是位置和关键字混合的方式。

既可以用关键字又可以用位置调用

这种方式的定义只能使用关键字传参的模式

f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的

网络模块request的request方法的设计

多数的可选参数被设计成可变关键字参数

有多种方法能够为函数定义输出:

非常晦涩

如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。

例子1:

addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。

python里面,函数的默认参数被存在__default__属性中,这是一个元组类型

例子2:

在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。

如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。

例子1中,连续调用addItem('world') 的结果会是

而不是期望的


文章名称:python所有语法函数 python语法函数定义
网页网址:http://scpingwu.com/article/hpsgog.html