NoSQL 数据库:何时使用 NoSQL 与 SQL?
NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。
创新互联公司是一家专业的成都网站建设公司,我们专注做网站、成都网站制作、网络营销、企业网站建设,卖友情链接,广告投放平台为企业客户提供一站式建站解决方案,能带给客户新的互联网理念。从网站结构的规划UI设计到用户体验提高,创新互联力求做到尽善尽美。
NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。
“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。
在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。
NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。
一些流行的 NoSQL 数据库包括:
随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。
传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。
有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。
但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。
一般来说,在以下情况下,NoSQL 比 SQL 更可取:
许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。
内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。
例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。
大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。
Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。
物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。
Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。
拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。
例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。
大数据技术包括哪些
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿
零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
什么是NoSQL数据库?
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
高性能 NoSQL
关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:
表结构是强约束的,业务变更时扩充很麻烦。
如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。
全文搜索只能使用 Like 进行整表扫描,性能非常低。
针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分为4类:
Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。
以 list 为例:
LPOP key 是移除并返回队列左边的第一个元素。
如果用关系数据库就比较麻烦了,需要操作:
Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。
最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。
特点:
以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。
文档数据库的主要缺点:
关系数据库是按行来存储的,列式数据库是按照列来存储数据。
按行存储的优势:
在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。
而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。
除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。
列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。
一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。
关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:
假设有一个交友网站,信息表如下:
需要匹配性别、地点、语言列。
需要匹配性别、地点、爱好列。
实际搜索中,各种排列组合非常多,关系数据库很难支持。
全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:
所以特别适合根据关键词来查询文档内容。
上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。
新闻标题:nosql大数据检索,列举10个以上NoSQL数据库
文章分享:http://scpingwu.com/article/hoehii.html