RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
go语言数据可视化 go语言图像处理

Grafana的介绍与使用

Grafana是一款用Go语言开发的开源数据可视化工具,可以做数据监控和数据统计,带有告警功能。目前使用grafana的公司有很多,如paypal、ebay、intel等。

10年的江城网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整江城建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“江城网站设计”,“江城网站推广”以来,每个客户项目都认真落实执行。

①可视化:快速和灵活的客户端图形具有多种选项。面板插件为许多不同的方式可视化指标和日志。

②报警:可视化地为最重要的指标定义警报规则。Grafana将持续评估它们,并发送通知。

③通知:警报更改状态时,它会发出通知。接收电子邮件通知。

④动态仪表盘:使用模板变量创建动态和可重用的仪表板,这些模板变量作为下拉菜单出现在仪表板顶部。

⑤混合数据源:在同一个图中混合不同的数据源!可以根据每个查询指定数据源。这甚至适用于自定义数据源。

⑥注释:注释来自不同数据源图表。将鼠标悬停在事件上可以显示完整的事件元数据和标记。

⑦过滤器:过滤器允许您动态创建新的键/值过滤器,这些过滤器将自动应用于使用该数据源的所有查询。

Dashboard的建立都是基于某一个数据源的,所以要先加一个数据源。

可视化方式有很多种,不过Graph、Table、Pie chart 这三种基本就已经满足数据展现要求了。

把这个Graph折线图Copy一份,改一下展现方式即可。

注意:默认添加完table后,如果有数字,会以K为单位,比如将300000展示位30k。

数字展示方式修改,Add column style:

当表格中出现数据后,需要通过筛选条件进行筛选,grafana提供了模板变量用于自定义筛选字段。

Type:定义变量类型

Query:这个变量类型允许您编写一个数据源查询,该查询通常返回一个 metric names, tag values or keys。例如,返回erver names, sensor ids or data centers列表的查询。

interval:interval值。这个变量可以代表时间跨度。不要按时间或日期直方图间隔硬编码一个组,使用这种类型的变量。

Datasource:此类型允许您快速更改整个仪表板的数据源。如果在不同环境中有多个数据源实例,则非常有用。

Custom:使用逗号分隔列表手动定义变量选项。

Constant:定义一个隐藏常数。有用的metric路径前缀的dashboards,你想分享。在dashboard export,期间,常量变量将作为一个重要的选项。

Ad hoc filters:非常特殊类型的变量,只对某些数据源,InfluxDB及Elasticsearch目前。它允许您添加将自动添加到使用指定数据源的所有metric查询的key/value 过滤器。

上面的Table和Graph分别使用了interval和query来定义变量进行筛选,不再重复。

grafana只有graph支持告警通知。

grafana的告警通知渠道有很多种,像Email、Teams、钉钉等都有支持。

在grafana.ini中开启告警:

要能发送邮件通知,首先需要在配置文件grafana.ini中配置邮件服务器等信息:

Grafana是个功能强大、展现层很漂亮的数据可视化监控工具,本篇主要介绍了Grafana基于MySQL数据源的安装及常用姿势,也支持其他数据源如ElasticSearch、InfluxDB等。更多内容可看 官网

GO富集结果整体可视化

  GO (Gene Ontology )是一个基因功能的国际标准分类体系。意在从分子功能 (Molecular Function)、生物过程 (Biological Process)、和细胞组成 (Cellular Component) 三个层面对基因和蛋白质功能进行限定和描述,建立一个适用于各种物种并能随着研究不断深入而更新的语言词汇标准。

  GO富集分析已经算是很常规的分析内容,可以很方便地将分析得到的基因集归类到不同的GO条目,从而让研究者可以轻松地得知这些基因都参与哪些生物过程。GO分析的操作这里就不再赘述了,网上有很多相关的帖子,基本上常规的物种用clusterProfiler包就可以解决了。今天我想来谈谈如何可视化GO分析的结果。对于GO富集结果的可视化,最常见的就是用条形图和气泡图来展示部分关注的条目。

  上面两种展现形式最为常见,可以很好地展示关注的条目。我们都知道有时候GO富集的条目会很多,如果想整体预览一下,有没有什么方法可以展示所有条目都涉及哪些功能呢?答案是肯定的。下面就来介绍一下simplifyEnrichment包是如何展示GO富集结果的。这里用该包中数据做一个演示。

结果如下图:

  结果看起来还是有点高大上的感觉,从图中可以看出496个GO条目根据条目名称的语意相似性被分成9个大类,每个大类右边有注释条,标明了每个类中涉及的条目关键字,有点类似词云的感觉。

  该包使用起来很简单,虽然不能准确的展示每个GO条目,但可以从整体上概览GO条目都涉及哪些方面,对于后续筛选还是很有帮助的。该包还有更为细节的用法,这里就不再赘述了,感兴趣的可以自己去摸索。按照惯例最后附上官方说明链接: Simplify Functional Enrichment Results 和 Word Cloud Annotation 。

PHP在最近一年在编程语言排行榜上下滑的原因是什么

主要从两个方面发表一下个人看法:

行业变迁

最近两年,我们耳熟能详的技术热词比如:云计算、machine learning、TensorFlow、AI……,基本与PHP都没太大的关系,再比如:(自然语言处理)NLP、(物联网)IoT、big data、区块链(blockchain)……,也基本和PHP没太大的关系;难道说PHP技术不行了?那倒也不是,其根本原因在于技术发展日新月异,开发语言也愈加细分,golang主要用于云计算、Python主要用于神经网络与深度学习、大数据与数据可视化分析有R语言,反观PHP,似乎除了web、及部分APP后端开发,其他专业技术领域有点力不从心,尽管它也在一直寻求新的爆发点。

语言特性

在web开发不甚成熟的时代,PHP以其“开发周期短”、“技术门槛低”的优势吸引了一大批开发人员加入,虽然项目可以很快推上线,但由于“弱类型解释语言”的基因缺陷,在性能优化大行其道的今天,PHP需要补足这一先天缺陷(从PHP5~PHP7就可以看出),这也给很多其他开发语言趁势而上的机会,比如go语言。业务量暴增需要程序能适应更高的并发访问以及更低的延迟,go语言天生的并发编程语言特性就恰好解决这一痛点,我所参与的大部分项目都选择go语言进行数据的云同步。再来说说Python,同样是动态解释型语言,Python的技术应用场景相比PHP而言则多出不少,比如GUI程序开发、机器学习、数据抓取与分析……,一旦项目有大量数据抓取的需求,我的第一选择肯定会是Python,因为在同等开发周期内,Python的效率与执行效果是最优的;所以总的来看,性能不及golang纯粹,应用场景不如Python丰富,却也不能否定“PHP是最好的开发语言”。我一般的技术选型如下:web后端与轻量级APP后台任务用PHP,大数据量吞吐与并发数据传输用golang,大数据抓取与分析用Python,我一直认为“术业有专攻”,没有最好的语言,只有最合适的语言,如果能一枪放倒敌人就没必要与其拼刺刀。

[R语言] GO富集分析可视化 GOplot::GOCircle

查看GOplot内示例数据的格式,对自己的数据做处理

观察结论:

观察自己的两个数据表:

table.legend 设置为T时会显示表格

本图中表格和图例是出图后剪切拼合而成,没有用R中的拼图包

如果要开发pc程序,开发的是一款可视化的开发工具,学什么编程语言比较好?

非编程篇/可直接上手的工具

1. Excel

Excel是最容易上手的图表工具,善于处理快速少量的数据。结合数据透视表,VBA语言,可制作高大上的可视化分析和dashboard仪表盘。

单表或单图用Excel制作是不二法则,它能快速地展现结果。但是越到复杂的报表,excel无论在模板制作还是数据计算性能上都稍显不足,任何大型的企业也不会用Excel作为数据分析的主要工具。

2. 可视化 BI(Power BI \Tableau \ 帆软FineBI等等)

也许是Excel也意识到自己在数据分析领域的限制和眼下自助分析的趋势,微软在近几年推出了BI工具Power BI。同可视化工具Tableau和国内帆软的BI工具一样,封装了所有可能分析操作的编程代码,操作上都是以点击和拖拽来实现,几款工具的定位稍有不同。

Power BI

最大的明显是提供了可交互、钻取的仪表板,利用Power Pivot可直接生产数据透视报告,省去了数据透视表。

Tableau

可视化图表较为丰富,堪称一等, 操作更为简单。

帆软FineBI

企业级的BI应用,实用性较强,因2B市场的大热受到关注。千万亿级的数据性能可以得到保证,业务属性较重,能与各类业务挂钩。

对于个人,上手简单,可以腾出更多的时间去学习业务逻辑的分析。

编程篇

对于寻求更高境界数据分析师或数据科学家,如果掌握可视化的编程技巧,就可以利用数据做更多的事情。熟练掌握一些编程技巧,赋予数据分析工作更加灵活的能力,各种类型的数据都能适应。大多数设计新颖、令人惊艳的数据图几乎都可以通过代码或绘图软件来实现。

与任何语言一样,你不可能立刻就开始进行对话。要从基础开始,然后逐步建立自己的学习方式。很可能在你意识到之前,你就已经开始写代码了。关于编程最酷的事情在于,一旦你掌握了一门语言,学习其他语言就会更加容易,因为它们的逻辑思路是共通的。

1. Python语言

Python 语言最大的优点在于善于处理大批量的数据,性能良好不会造成宕机。尤其适合繁杂的计算和分析工作,而且,Python的语法干净易读,可以利用很多模块来创建数据图形比较受IT人员的欢迎。

利用 Python 生成的图表

2. PHP语言

PHP这个语言松散却很有调理,用好了功能很强大。在数据分析领域可以用php做爬虫,爬取和分析百万级别的网页数据,也可与Hadoop结合做大数据量的统计分析。

因为大部分 Web 服务器都事先安装了 PHP 的开源软件,省去了部署之类的工作,可直接上手写。

比如 Sparkline(微线表)库,它能让你在文本中嵌入小字号的微型图表,或者在数字表格中添加视觉元素,就像下面这张图一样:

利用 PHP 图形函数库生成的微线表

一般 PHP会和 MySQL 数据库结合使用,这使它能物尽其用,处理大型的数据集。

3. HTML、JavaScript 和 CSS语言

很多可视化软件都是基于web端的,可视化的开发,这几类语言功不可没。而且随着人们对浏览器工作越来越多的依赖,Web 浏览器的功能也越来越完善,借助 HTML、JavaScript 和 CSS,可直接运行可视化展现的程序。

可交互日历,同时也是用户使用 your.flowingdata 的热度图

不过还是有几点需要注意。由于相关的软件和技术还比较新,在不同浏览器中你的设计可能在显示上会有所差别。在 Internet Explorer 6 这类老旧的浏览器中,有些工具可能无法正常运行。比如一些银行单位仍旧使用着IE,无论是自己使用还是开发的时候都要考虑这样的问题。

4. R语言

R语言是绝大多数统计学家最中意的分析软件,开源免费,图形功能很强大。

谈到R语言的历史,它是专为数据分析而设计的,面向的也是统计学家,数据科学家。但是由于数据分析越来越热门,R语言的使用也不瘦那么多限制了。

R的使用流程很简洁,支持 R 的工具包也有很多,只需把数据载入到 R 里面,写一两行代码就可以创建出数据图形。比如利用 Portfolio 工具包快速创建出如下的板块层级图。

比如热度图

go和python哪个好

有一定的事实证明,Python语言更适合初学者,Python语言并不会让初学者感到晦涩,它突破了传统程序语言入门困难的语法屏障,初学者在学习Python的同时,还能够锻炼自己的逻辑思维,同时Python也是入门人工智能的首选语言。

学习编程并非那么容易,有的人可能看完了Python语法觉得特别简单,但再往后看就懵了,因为到后期发现并不能学以致用,理论结合项目才是学好一门编程语言的关键。可以选择报班入门,一般在2W左右,根据自己的实际需要实地了解,可以先在试听之后,再选择适合自己的。


网页标题:go语言数据可视化 go语言图像处理
链接地址:http://scpingwu.com/article/hgiege.html