这篇文章主要讲解了“Python算法如何解决楼梯台阶问题”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python算法如何解决楼梯台阶问题”吧!
专注于为中小企业提供成都网站制作、成都网站建设、外贸营销网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业兰考免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了千余家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
有一个有N个台阶的楼梯,你一次可以爬1或2个台阶。
给定N,编写一个函数,返回爬完楼梯的方式数量。步骤的顺序很重要。
例如,如果N是4,那么有5种方式:
1,1,1,1
2,1,1
1,2,1
1,1,2
2,2
如果规定的不是一次只能爬1或2步,而是可以使用正整数X集合内的任意数字爬楼梯,那会怎么样?例如,如果X = {1,3,5},则表示一次爬升1,3或5阶楼梯。
解决方案
从一些测试案例开始总是好的做法。让我们从小的案例开始,看看能否找到某种规律。
N = 1,1种爬楼方式:[1]
N = 2,2种爬楼方式:[1,1],[2]
N = 3,3种爬楼方式:[1,2],[1,1,1],[2,1]
N = 4,5种爬楼方式:[1,1,2],[2,2],[1,2,1],[1,1,1,1],[2,1,1]
你有没有注意到什么?请看N = 3时,爬完3阶楼梯的方法数量是3,基于N = 1和N = 2。存在什么关系?
爬完N = 3的两种方法是首先达到N = 1,然后再往上爬2步,或达到N = 2再向上爬1步。所以 f(3) = f(2) + f(1)。
这对N = 4是否成立呢?是的,这也是成立的。因为我们只能在达到第三个台阶然后再爬一步,或者在到了第二个台阶之后再爬两步这两种方式爬完4个台阶。所以f(4) = f(3) + f(2)。
所以关系如下: f(n) = f(n – 1) + f(n – 2),且f(1) = 1和f(2) = 2。这就是斐波那契数列。
def fibonacci(n): if n <= 1: return 1 return fibonacci(n - 1) + fibonacci(n - 2)
当然,这很慢(O(2^N))——我们要做很多重复的计算!通过迭代计算,我们可以更快:
def fibonacci(n): a, b = 1, 2 for _ in range(n - 1): a, b = b, a + b return a
现在,让我们尝试概括我们学到的东西,看看是否可以应用到从集合X中取步数这个要求下的爬楼梯。类似的推理告诉我们,如果X = {1,3,5},那么我们的算法应该是f(n) = f(n – 1) + f(n – 3) + f(n – 5)。如果n <0,那么我们应该返回0,因为我们不能爬负数。
def staircase(n, X): if n < 0: return 0 elif n == 0: return 1 elif n in X: return 1 + sum(staircase(n - x, X) for x in X if x < n) else: return sum(staircase(n - x, X) for x in X if x < n)
这也很慢(O(|X|^N)),因为也重复计算了。我们可以使用动态编程来加快速度。
每次的输入cache[i]将包含我们可以用集合X到达台阶i的方法的数量。然后,我们将使用与之前相同的递归从零开始构建数组:
def staircase(n, X): cache = [0 for _ in range(n + 1)] cache[0] = 1 for i in range(n + 1): cache[i] += sum(cache[i - x] for x in X if i - x > 0) cache[i] += 1 if i in X else 0 return cache[-1]
现在时间复杂度为O(N * |X|),空间复杂度为O(N)。
感谢各位的阅读,以上就是“Python算法如何解决楼梯台阶问题”的内容了,经过本文的学习后,相信大家对Python算法如何解决楼梯台阶问题这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
分享名称:Python算法如何解决楼梯台阶问题
本文网址:http://scpingwu.com/article/gjosjd.html