53.MaximumSubarray
53. Maximum Subarray
创新互联建站主要从事成都网站制作、做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务无为,10年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
题意:
根据给定的数组,查找和最大的字串。
使用 "Kadane算法"查找最大和字串。
解题:
1)定义变量Max来保存最大和。定义sum来保存中间值的和。
2)数组连续几个值的和如果为负数,也就意味着再往负数上加正数就没有意义了,加上的和肯定不会大于加上数的值。此时重新开始计算联系元素和即可。
3)如果数组为全负元素,那么取出最大值即可。
if ( sum <= 0 ) { sum = 0; } 作用保证重新计数时,是从零开始的。 if ( sum <= 0 ) { sum = *( nums + cnt ); } 没有置零而是置为当前值,是为了防止全负数组时,能把最大的值存入Max变量中。 Max起始置为INT_MIN保证了int型的任何负数都可存入。
int maxSubArray(int* nums, int numsSize) { int cnt = 0; int max = INT_MIN; int sum = 0; for ( cnt = 0; cnt < numsSize; cnt++ ) { if ( sum <= 0 ) { sum = 0; } sum = sum + *( nums + cnt ); if ( sum <= 0 ) { sum = *( nums + cnt ); } if ( sum > max ) { max = sum; } } return max; }
当前文章:53.MaximumSubarray
网页链接:http://scpingwu.com/article/gjcgjc.html