这篇文章将为大家详细讲解有关hadoop-Mapper的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
成都创新互联公司专注于宝鸡企业网站建设,响应式网站开发,成都商城网站开发。宝鸡网站建设公司,为宝鸡等地区提供建站服务。全流程定制网站设计,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务
* Licensed to the Apache Software Foundation (ASF) under one package org.apache.hadoop.mapreduce; import java.io.IOException; /** * Maps input key/value pairs to a set of intermediate key/value pairs. * *Maps are the individual tasks which transform input records into a * intermediate records. The transformed intermediate records need not be of * the same type as the input records. A given input pair may map to zero or * many output pairs.
* *The Hadoop Map-Reduce framework spawns one map task for each * {@link InputSplit} generated by the {@link InputFormat} for the job. *
Mapper
implementations can access the {@link Configuration} for * the job via the {@link JobContext#getConfiguration()}. * *The framework first calls * {@link #setup(org.apache.hadoop.mapreduce.Mapper.Context)}, followed by * {@link #map(Object, Object, Context)} * for each key/value pair in the
* *InputSplit
. Finally * {@link #cleanup(Context)} is called.All intermediate values associated with a given output key are * subsequently grouped by the framework, and passed to a {@link Reducer} to * determine the final output. Users can control the sorting and grouping by * specifying two key {@link RawComparator} classes.
* *The
Mapper
outputs are partitioned per *Reducer
. Users can control which keys (and hence records) go to * whichReducer
by implementing a custom {@link Partitioner}. * *Users can optionally specify a
combiner
, via * {@link Job#setCombinerClass(Class)}, to perform local aggregation of the * intermediate outputs, which helps to cut down the amount of data transferred * from theMapper
to theReducer
. * *Applications can specify if and how the intermediate * outputs are to be compressed and which {@link CompressionCodec}s are to be * used via the
* *Configuration
.If the job has zero * reduces then the output of the
* *Mapper
is directly written * to the {@link OutputFormat} without sorting by keys.Example:
** ** public class TokenCounterMapper * extends MapperApplications may override the {@link #run(Context)} method to exert * greater control on map processing e.g. multi-threaded
* * @see InputFormat * @see JobContext * @see Partitioner * @see Reducer */ public class MapperMapper
s * etc.{ public class Context extends MapContext { public Context(Configuration conf, TaskAttemptID taskid, RecordReader reader, RecordWriter writer, OutputCommitter committer, StatusReporter reporter, InputSplit split) throws IOException, InterruptedException { super(conf, taskid, reader, writer, committer, reporter, split); } } /** * Called once at the beginning of the task. */ protected void setup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Called once for each key/value pair in the input split. Most applications * should override this, but the default is the identity function. */ @SuppressWarnings("unchecked") protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } /** * Called once at the end of the task. */ protected void cleanup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Expert users can override this method for more complete control over the * execution of the Mapper. * @param context * @throws IOException */ public void run(Context context) throws IOException, InterruptedException { setup(context); while (context.nextKeyValue()) { map(context.getCurrentKey(), context.getCurrentValue(), context); } cleanup(context); } }
Mapper的四个方法是setup,map,cleanup和run。其中,setup和cleanup用于管理Mapper生命周期中的资源,setup在完成Mapper构造,即将开始执行map动作前调用,cleanup则在所有的map动作完成后被调用。方法map用于对一次输入的key/value对进行map动作。run方法执行了上面描述的过程,它调用setup,让后迭代所有的key/value对,进行map,最后调用cleanup。
org.apache.hadoop.mapreduce.lib.map中实现了Mapper的三个子类,分别是InverseMapper(将输入
InverseMapper源代码:
* Licensed to the Apache Software Foundation (ASF) under one package org.apache.hadoop.mapreduce.lib.map; import java.io.IOException; /** A {@link Mapper} that swaps keys and values. */ public class InverseMapperextends Mapper { /** The inverse function. Input keys and values are swapped.*/ @Override public void map(K key, V value, Context context ) throws IOException, InterruptedException { context.write(value, key); } }
TokenCountMapper源代码:
* Licensed to the Apache Software Foundation (ASF) under one package org.apache.hadoop.mapreduce.lib.map; import java.io.IOException; /** * Tokenize the input values and emit each word with a count of 1. */ public class TokenCounterMapper extends Mapper
MultithreadedMapper会启动多个线程执行另一个Mapper的map方法,它会启动mapred.map.multithreadedrunner.threads(配置项)个线程执行Mapper:mapred.map.multithreadedrunner.class(配置项)。MultithreadedMapper重写了基类Mapper的run方法,启动N个线程(对应的类为MapRunner)执行mapred.map.multithreadedrunner.class(我们称为目标Mapper)的run方法(就是说,目标Mapper的setup和cleanup会被执行多次)。目标Mapper共享同一份InputSplit,这就意味着,对InputSplit的数据读必须线程安全。为此,MultithreadedMapper引入了内部类SubMapRecordReader,SubMapRecordWriter,SubMapStatusReporter,分别继承自RecordReader,RecordWriter和StatusReporter,它们通过互斥访问MultithreadedMapper的Mapper.Context,实现了对同一份InputSplit的线程安全访问,为Mapper提供所需的Context。这些类的实现方法都很简单。
关于“hadoop-Mapper的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
新闻标题:hadoop-Mapper的示例分析
文章出自:http://scpingwu.com/article/ggjcjg.html