如何利用JupyterNotekook做初步分析
这篇文章主要介绍如何利用Jupyter Notekook做初步分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
创新互联公司主要从事成都做网站、网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务碾子山,十余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
最近一段时间都是Jupyter Notebook做策略的最初版本设计,就是行情导入画图一类。
之前做个dataframe做分析容易,这个算是简化版本。
新建一个DataAnalyzer 类,这个简单很多,支持从csv和MongoDB导入行情数据,和从1分钟k线整合不同分钟k线
下面是导入1分钟螺纹钢数据,整合为5分钟K线
from pymongo import MongoClient, ASCENDING import pandas as pd import numpy as np from datetime import datetime import talib import matplotlib.pyplot as plt import scipy.stats as st %matplotlib inline %config InlineBackend.figure_format = 'retina' class DataAnalyzer(object): """ """ def __init__(self, exportpath="C:\Project\\", datformat=['datetime', 'high', 'low', 'open', 'close','volume']): self.mongohost = None self.mongoport = None self.db = None self.collection = None self.df = pd.DataFrame() self.exportpath = exportpath self.datformat = datformat self.startBar = 2 self.endBar = 12 self.step = 2 self.pValue = 0.015 def db2df(self, db, collection, start, end, mongohost="localhost", mongoport=27017, export2csv=False): """读取MongoDB数据库行情记录,输出到Dataframe中""" self.mongohost = mongohost self.mongoport = mongoport self.db = db self.collection = collection dbClient = MongoClient(self.mongohost, self.mongoport, connectTimeoutMS=500) db = dbClient[self.db] cursor = db[self.collection].find({'datetime':{'$gte':start, '$lt':end}}).sort("datetime",ASCENDING) self.df = pd.DataFrame(list(cursor)) self.df = self.df[self.datformat] self.df = self.df.reset_index(drop=True) path = self.exportpath + self.collection + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def csv2df(self, csvpath, dataname="csv_data", export2csv=False): """读取csv行情数据,输入到Dataframe中""" csv_df = pd.read_csv(csvpath) self.df = csv_df[self.datformat] self.df["datetime"] = pd.to_datetime(self.df['datetime']) # self.df["high"] = self.df['high'].astype(float) # self.df["low"] = self.df['low'].astype(float) # self.df["open"] = self.df['open'].astype(float) # self.df["close"] = self.df['close'].astype(float) # self.df["volume"] = self.df['volume'].astype(int) self.df = self.df.reset_index(drop=True) path = self.exportpath + dataname + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def df2Barmin(self, inputdf, barmins, crossmin=1, export2csv=False): """输入分钟k线dataframe数据,合并多多种数据,例如三分钟/5分钟等,如果开始时间是9点1分,crossmin = 0;如果是9点0分,crossmin为1""" dfbarmin = pd.DataFrame() highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 datetime = 0 for i in range(0, len(inputdf) - 1): bar = inputdf.iloc[i, :].to_dict() if openBarMin == 0: openBarmin = bar["open"] if highBarMin == 0: highBarMin = bar["high"] else: highBarMin = max(bar["high"], highBarMin) if lowBarMin == 0: lowBarMin = bar["low"] else: lowBarMin = min(bar["low"], lowBarMin) closeBarMin = bar["close"] datetime = bar["datetime"] volumeBarmin += int(bar["volume"]) # X分钟已经走完 if not (bar["datetime"].minute + crossmin) % barmins: # 可以用X整除 # 生成上一X分钟K线的时间戳 barMin = {'datetime': datetime, 'high': highBarMin, 'low': lowBarMin, 'open': openBarmin, 'close': closeBarMin, 'volume' : volumeBarmin} dfbarmin = dfbarmin.append(barMin, ignore_index=True) highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 if export2csv == True: dfbarmin.to_csv(self.exportpath + "bar" + str(barmins)+ str(self.collection) + ".csv", index=True, header=True) return dfbarmin exportpath = "C:\\Project\\" DA = DataAnalyzer(exportpath) #数据库导入 start = datetime.strptime("20190920", '%Y%m%d') end = datetime.now() dfrb8888 = DA.db2df(db="VnTrader_1Min_Db", collection="rb8888", start = start, end = end,export2csv=True) dfrb5min = DA.df2Barmin(dfrb8888,5,crossmin=1, export2csv=True) dfrb5min.tail()
2. 计算5分钟K线的参照,包括标准差,rsi,5分钟均线,和40分钟均线
logdata = pd.DataFrame() logdata['close'] =(dfrb5min['close']) # logdata['tr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,1) # logdata['atr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,20) logdata['std20'] = talib.STDDEV( np.array(dfrb5min['close']) ,20) logdata['rsi30'] = talib.RSI(np.array(dfrb5min['close']) ,30) logdata['sma5'] = talib.SMA(np.array(dfrb5min['close']) ,5) logdata['sma40'] = talib.SMA(np.array(dfrb5min['close']) ,40) logdata.plot(subplots=True,figsize=(18,16))
3. 使用快慢均线策略,显示买入卖出点
closeArray = np.array(logdata['close']) listup,listdown = [],[] for i in range(1,len(logdata['close'])): if logdata.loc[i,'sma5'] > logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] < logdata.loc[i-1,'sma40']: listup.append(i) elif logdata.loc[i,'sma5'] < logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] > logdata.loc[i-1,'sma40']: listdown.append(i) fig=plt.figure(figsize=(18,6)) plt.plot(closeArray, color='y', lw=2.) plt.plot(closeArray, '^', markersize=5, color='r', label='UP signal', markevery=listup) plt.plot(closeArray, 'v', markersize=5, color='g', label='DOWN signal', markevery=listdown) plt.legend() plt.show()
以上是“如何利用Jupyter Notekook做初步分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
新闻标题:如何利用JupyterNotekook做初步分析
网页链接:http://scpingwu.com/article/geejpi.html