python所有内置函数的定义详解
1、定义函数
成都创新互联是一家专注于成都网站建设、成都网站制作与策划设计,金寨网站建设哪家好?成都创新互联做网站,专注于网站建设十年,网设计领域的专业建站公司;建站业务涵盖:金寨等地区。金寨做网站价格咨询:18982081108
函数是可重用的程序。本书中已经使用了许多内建函数,如len()函数和range()函数,但是还没自定义过函数。定义函数的语法格式如下:
def 函数名(参数):
函数体
定义函数的规则如下:
①关键字def用来定义一个函数,它是define的缩写。
②函数名是函数的唯一标识,函数名的命名规则遵循标识符的命名规则。
③函数名后面一定要紧跟着一个括号,括号内的参数是可选的,括号后面要有冒号。
④函数体(statement)为一个或一组Python语句,注意要有缩进。
⑤函数体的第一行可以有文档字符串,用于描述函数的功能,用三引号括起来。
按照定义规则,可以定义第一个函数了:
def hello_world():
... print('Hello,world!') # 注意函数体要有缩进
...
hello_world()
Hello,world!
这个函数不带任何参数,它的功能是打印出“Hello,world!”。最后一行代码hello_world()是调用函数,即让Python执行函数的代码。
2、全局变量和局部变量
全局变量是定义在所有函数外的变量。例如,定义一个全局变量a,分别在函数test1()和test2()使用变量a:
a = 100 # 全局变量
def test1():
... print(a)
...
def test2():
... print(a)
...
test1()
100
test2()
100
定义了全局变量a之后,在函数test1()和test2()内都可以使用变量a,由此可知,全局变量的作用范围是全局。
局部变量是在函数内定义的变量,除了用关键字global修饰的变量以外。例如,在函数test1()内定义一个局部变量a,分别在函数外和另一个函数test2()内使用变量a:
def test1():
... a = 100 # 局部变量
... print(a)
...
def test2():
... print(a)
...
test1()
100
print(a)
Traceback (most recent call last):
File "stdin", line 1, in module
NameError: name 'a' is not defined
test2()
Traceback (most recent call last):
File "stdin", line 1, in module
File "stdin", line 2, in test2
NameError: name 'a' is not defined
Python解释器提示出错了。由于局部变量a定义在函数test1()内,因此,在函数test1()内可以使用变量a,但是在函数外或者另一个函数test2()内使用变量a,都会报错,由此可见,局部变量的作用范围是定义它的函数内部。
一般情况下,在函数内声明的变量都是局部变量,但是采用关键字global修饰的变量却是全局变量:
def test1():
... global a # 全局变量
... a = 100
... print(a)
...
def test2():
... print(a)
...
test1()
100
print(a)
100
test2()
100
这个程序与上个程序相比,只是在函数test1()中多了一行代码“global a”,程序便可以正确运行了。在函数test1()中,采用关键字global修饰了变量a之后,变量a就变成了全局变量,不仅可以在该函数内使用,还可以在函数外或者其他函数内使用。
如果在某个函数内局部变量与全局变量同名,那么在该函数中局部变量会覆盖全局变量:
a = 100 # 全局变量
def test1():
... a = 200 # 同名局部变量
... print(a)
...
def test2():
... print(a)
...
test1()
200
test2()
100
由于在函数test1()中定义了一个与全局变量同名的局部变量a,因此,在函数test1()中全局变量a的值被局部变量覆盖了,但是在函数test2()中全局变量a的值没有被覆盖。
综上所述,在Python中,全局变量保存的数据供整个脚本文件使用;而局部变量只用于临时保存数据,变量仅供局部代码块使用。
Python中冷门但非常好用的内置函数
Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit] += 1
print(result)
#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
c = Counter(fruits)
print(dict(c))
#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:
Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。
all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0
True
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。
F-strings
在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1='Hello'
s2='World'
print(f'{s1} {s2}!')
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}')
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
python有多少内置函数
Python内置函数有很多,为大家推荐5个神仙级的内置函数:
(1)Lambda函数
用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。
Lamdba的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。
利用Lamdba函数,往往可以将代码简化许多。
(2)Map函数
会将一个函数映射到一个输入列表的所有元素上,比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。
我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简。
(3)Reduce函数
当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。
它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。
(4)enumerate函数
用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。
它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。
(5)Zip函数
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。
新闻名称:python范化函数,python求范数
地址分享:http://scpingwu.com/article/dsigdid.html