mysql 分区PARTITIONS之基本使用
当数据表中的数据量很大时,分区带来的效率提升才会显现出来。
创新互联建站专注于企业成都全网营销、网站重做改版、丹寨网站定制设计、自适应品牌网站建设、H5网站设计、商城网站建设、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为丹寨等各大城市提供网站开发制作服务。
只有检索字段为分区字段时,分区带来的效率提升才会比较明显。因此, 分区字段的选择很重要 ,并且 业务逻辑要尽可能地根据分区字段做相应调整 (尽量使用分区字段作为查询条件)。
1、分区表对业务透明,只需要维护一个表的数据结构。
2、DML操作加锁仅影响操作的分区,不会影响未访问分区。
3、通过分区交换快速将数据换入和换出分区表。
4、通过TRUNCATE操作快速清理特定分区数据。
5、通过强制分区仅访问特定分区数据,减少操作影响。
6、通过大数据量分区能有效降低索引层数,提高查询性能。
1、创建表时指定分区
物理文件:
2、插入数据
3、查询 information_schema.partitions 表得到该表的分区信息
4、查询计划分析
5、添加分区
若报错:
6、修改/覆盖/合并分区
报错
所以需要添加pmax 分区,一同修改
7、删除分区
8、查询具体分区的下数据
MySQL分区的限制
十、MySQL表分区
表分区是将⼀个表的数据按照⼀定的规则⽔平划分为不同的逻辑块,并分别进⾏物理存储,这个规则就叫做分区函数,可以有不同的分区规则。5.7可以通过show plugins语句查看当前MySQL是否⽀持表分区功能。
但当表中含有主键或唯⼀键时,则每个被⽤作 分区函数的字段必须是表中唯⼀键和主键的全部或⼀部分 ,否则就⽆法创建分区表。⽐如下⾯的表由于唯⼀键和主键没有相同的字段,所以⽆法创建表分区
上述例⼦中删除唯⼀键,确保主键中的字段包含分区函数中的所有字段,创建成功
或者将主键扩展为包含ref字段
表分区的主要优势在于:
可以允许在⼀个表⾥存储更多的数据,突破磁盘限制或者⽂件系统限制
对于从表⾥将过期或历史的数据移除在表分区很容易实现,只要将对应的分区移除即可
对某些查询和修改语句来说,可以 ⾃动 将数据范围缩⼩到⼀个或⼏个表分区上,优化语句执⾏效率。⽽且可以通过 显示指定表分区 来执⾏语句,⽐如 SELECT * FROM t PARTITION (p0,p1) WHERE c 5
表分区类型分为:
范围表分区,按照⼀定的范围值来确定每个分区包含的数据,分区函数使⽤的字段必须只能是 整数类型,分区的定义范围必须是连续的,且不能有重叠部分,通过使⽤VALUES LESS THAN来定义分区范围,表分区的范围定义是从⼩到⼤定义的
⽐如:
Store_id6的数据被放在p0分区⾥,6=store_id10之间的数据被放在p1分区⾥,以此类推,当新插⼊的数据为(72, ‘Mitchell’, ‘Wilson’, ‘1998-06-25’, NULL, 13) 时,则新数据被插⼊到p2分区⾥,但当插⼊的数据的store_id为21时,由于没有分区去容纳此数据,所以会报错,我们需要修改⼀下表的定义
报错:
修改表的定义:
MAXVALUE关键词的作⽤是表示可能的最⼤值,所以任何store_id=16的数据都会被写⼊到p3分区⾥。分区函数中也可以使⽤表达式 ,⽐如:
对timestamp字段类型可以使⽤的表达式⽬前仅有unix_timestamp ,其他的表达式都不允许
列表表分区,按照⼀个⼀个确定的值来确定每个分区包含的数据,通过PARTITION BY LIST(expr)分区函数表达式必须返回整数,取值范围通过VALUES IN (value_list)定义
对List表分区来说,没有MAXVALUE特殊值,所有的可能取值都需要再VALUES IN中包含,如果有未定义的取值则会报错
同样,当有主键或者唯⼀键存在的情况下,分区函数字段需要包含在主键或唯⼀键中
对range和list表分区来说,分区函数可以包含多个字段,分区多字段函数(column partition) 所涉及的字段类型可以包括:
范围多字段分区函数与普通的范围分区函数的区别在于:
a) 字段类型多样化
b) 范围多字段分区函数 不⽀持表达式,只能⽤字段名
c) 范围多字段分区函数⽀持⼀个或多个字段
再⽐如创建如下的表分区:
对多列对⽐来说:
当然只要保证取值范围是增⻓的,表分区就能创建成功,⽐如:
但如果 取值范围不是增⻓的,就会返回错误 :
对其他数据类型的⽀持:
list列表多字段表分区,例如:你有一个在12个城市客户的业务, 为了销售和市场的目的, 你的组织每3个城市划分为一个区域针对LIST COLUMNS分区, 你可以基于城市的名称创建一个客户数据表并声明4个分区当你的客户在对应的这个区域:
使用日期分区
但是这种情况在日期增长到非常大的时候是很复杂的, 所以这种还是使用RANGE 分区方式比较好
按照⼀个⾃定义的函数返回值来确定每个分区包含的数据,这个 ⾃定义函数也可以仅仅是⼀个字段名字
通过PARTITION BY HASH (expr)⼦句来表达哈希表分区,其中的 expr表达式必须返回⼀个整数,基于分区个数的取模(%)运算。根据余数插⼊到指定的分区
对哈希表分区来说只需要定义分区的个数,其他的事情由内部完成
如果没有写明PARTITIONS字段,则默认为1,表达式可以是整数类型字段,也可以是⼀个函数,⽐如
⽐如: CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE) PARTITION BY HASH( YEAR(col3) ) PARTITIONS 4;
如果插⼊⼀条数据对应的col3为‘2005-09-15’时,则插⼊数据的分区计算⽅法为:
与哈希表分区类似,只不过哈希表分区依赖于⾃定义的函数,⽽key表分区的哈希算法是依赖MySQL本身, CREATE TABLE ... PARTITION BY KEY () 创建key表分区, 括号⾥⾯可以包含0个或者多个字段,所引⽤的字段必须是主键或者主键的⼀部分 ,如果括号⾥⾯没有字段,则代表使⽤主键
如果表中没有主键但有唯⼀键,则使⽤唯⼀键,但 唯⼀键字段必须定义为not null ,否则报错
所引⽤的字段未必必须是整数类型,其他的类型也可以使⽤,⽐如:
⼦表分区,是在表分区的基础上再创建表分区的概念, 每个表分区下的⼦表分区个数必须⼀致 ,⽐如:
ts表拥有三个范围分区,同时每个分区都各⾃有两个⼦分区,所以总共有6个分区
⼦表分区必须是范围/列表分区+哈希/key⼦表分区的组合
⼦表分区也可以显示的指定⼦表分区的名字,⽐如:
不同的表分区对NULL值的处理⽅式不同
对范围表分区来说,如果插⼊的是NULL值,则将数据放到最⼩的分区表⾥
对list表分区来说,⽀持NULL值的唯⼀情况就是某个分区的允许值中包含NULL
对哈希表分区和Key表分区来说,NULL值会被当成0值对待
通过alter table命令可以执⾏增加,删除,重新定义,合并或者拆分表分区的管理动作
对范围表分区和列表表分区来说,删除⼀个表分区命令如下:
删除表分区的动作不光会把分区删掉,也会把表分区⾥原来的数据给删除掉
在原分区上增加⼀个表分区可以通过alter table … add partition语句来完成
但对范围表分区来说,增加的表分区必须在尾部增加,在头部或者在中间增加都会失败:
为解决这个问题,可以使⽤ REORGANIZE 命令:
对列表表分区来说,只要新增加的分区对应的值在之前的表分区中没有出现过,就可以通过alter table… add partition来增加
当然, 也可以通过REORGANIZE命令将之前的多个分区合并成⼀个或⼏个分区,但要保持分区值⼀致:
更复杂的⽐如将多个分区重组成多个分区:
Mysql分区表Partition
一、背景
话说风和日丽的一天,为提高随着业务增长的大表(3510449行吧)的访问效率,于是决定对表分区,记录如下。
二、实操
结合业务,若干条记录会集中在一个日期,查询时也往往只查询一个日期内的数据,于是选取分区字段为时间。
创建分区 比如
CREATE TABLE message_all (
id int(10) NOT NULL AUTO_INCREMENT,
......
createtime datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间'
PRIMARY KEY ( id , createtime )
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (YEAR(createtime))
(PARTITION p2015 VALUES LESS THAN (2016) ENGINE = InnoDB,
PARTITION p2016 VALUES LESS THAN (2017) ENGINE = InnoDB,
PARTITION p2017 VALUES LESS THAN (2018) ENGINE = InnoDB,
PARTITION p2018 VALUES LESS THAN MAXVALUE ENGINE = InnoDB)
不过我们表已经有了当然不能这么建,除非你想导一次数据。
如下操作 :
1、
ALTER TABLE message_all PARTITION BY RANGE (to_days(createtime))
(
PARTITION p2015 VALUES LESS THAN (to_days('2016-01-01')),
PARTITION p2016 VALUES LESS THAN (to_days('2017-01-01')),
PARTITION p2017 VALUES LESS THAN (to_days('2018-01-01')),
PARTITION p2018 VALUES LESS THAN MAXVALUE
);
或者
2、ALTER TABLE message_all PARTITION BY RANGE (YEAR(createtime))
(
PARTITION p2015 VALUES LESS THAN (YEAR('2016-01-01'))
);
然后追加。
ALTER TABLE message_all ADD PARTITION
(
PARTITION p2016 VALUES LESS THAN (YEAR('2017-01-01')),
PARTITION p2017 VALUES LESS THAN (YEAR('2018-01-01')),
PARTITION p2018 VALUES LESS THAN MAXVALUE
);
这里会有几种错误情况:
1、ALTER TABLE message_all PARTITION BY RANGE (to_days(createtime)) ;
[Err] 1492 - For RANGE partitions each partition must be defined
解释:必须指定至少一个分区。
2、[Err] 1492 - A PRIMARY KEY must include all columns in the table's partitioning function
解释:分区字段必须是主键之一。
3、[Err] 1492 - Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed
解释:分区字段为timestamp,换成datetime。
4、[Err] 1526 - Table has no partition for value xxxx
解释:用追加方式第一次必须覆盖目前所有数据。
总结:
1、创建时必须指定至少一个分区。
2、key必须为主键之一。
3、RANGE处必须为INT型,时间字段用函数转——YEAR()、YEARWEEK()、TO_DAYS()。
4、THAN处必须为INT型,时间字段用函数转——TO_DAYS、TO_SECONDS()、UNIX_TIMESTAMP()。
5、它就是以两个INT比大小划分的文件。
6、所有ENGINE必须一样。
7、范围分区添加只能在最大值后面追加。
8、分区是有上限的貌似1024个。
用到的其他操作
1、删除分区(直接扔掉分区文件,数据也没了)
ALTER TABLE message_all DROP PARTITION p2016;
2、清空分区数据
ALTER TABLE message_all TRUNCATE PARTITION p2017;
3、重定义(可实现:分区拆分、合并、重命名)
ALTER TABLE message_all REORGANIZE PARTITION p201601,p201602,p201603,p201604 INTO
(
PARTITION p2016012 VALUES less than(TO_DAYS('2016-03-01')),
PARTITION p2016034 VALUES less than(TO_DAYS('2016-05-01'))
);
检查/查看你的分区
1、SHOW TABLE STATUS LIKE 'message_all';
2、SELECT * FROM information_schema.partitions WHERE table_name='message_all';
3、SHOW CREATE TABLE message_all;
4、EXPLAIN SELECT COUNT(1) FROM message_all WHERE createtime= '2016-01-01' AND createtime '2016-12-30';如果用到了分区partitions里会有显示。
5、指定分区查
SELECT COUNT(1) FROM message_all PARTITION (p2016) 表别名 WHERE ......;
到这里就结束啦,土豆白。
一些概念
水平分区Partition有以下几种模式
MySQL-分区表
对底层表的封装,意味着索引也是按照分区的子表定义的,而没有全局索引。(所以即使有唯一性索引,在不同子表中可能会有重复数据)
单表数据量超大时索引失效
将单表分区成数个区域,通过分区函数,可以快速地定位到数据的区域。而且相比于索引,分区不需要额外的数据结构记录每个分区的数据,代价更低。只需要一个简单的表达式就可以指向正确的分区
可以只是用简单的分区方式存放表,不要任何索引,只要将查询定位到需要的大致数据位置,通过where条件,将需要的数据限制在少数分区中,则效率是很高的。WARNNING:查询需要扫描的分区个数限制在一个很小的数量。
如果数据有明显的“热点”,可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中。
如果分区表达式的值可以是NULL:第一个分区会使一个特殊分区。以partition by range year(order_date)为例,所有在order_date列为NULL或者非法值的数据都会被放到第一个分区。那么所有的查询在定位分区后都会增加扫描第一个分区。而且如果第一个分区很大的时候,查询的成本会被这个“拖油瓶”分区无情的增加。
创建一个无用的第一分区可以解决这个问题,partition p_nulls values less than (0);
对于分区列和索引列不匹配的查询,虽然查询能够使用索引,但是无法通过分区定位到目标数据的分区(也就是数据分布相对更加分散),需要遍历每个分区内的索引,除非查询中的条件同时也包含分区条件。所以期望分区条件范围被热门查询索引所包含。
对于 范围分区 技术,需要适当限制分区的数量,否则对于大量数据批量导入的场景,选择分区的成本过高。对于大多数系统,100个左右的分区是没有问题的。
标题名称:mysql分区怎么弄,mysql分区方式
本文来源:http://scpingwu.com/article/dsgijco.html