RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
tidbnosql的简单介绍

newsql和nosql的区别和联系

在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。

成都创新互联是一家专业提供广信企业网站建设,专注与成都网站制作、做网站、外贸营销网站建设H5场景定制、小程序制作等业务。10年已为广信众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。

OldSQL+NewSQL 在数据中心类应用中混合部署

采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。

商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。

商业银行数据中心存储架构

与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。

OldSQL+NoSQL 在互联网大数据应用中混合部署

在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。

数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。

淘宝海量数据产品技术架构

基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。

NewSQL+NoSQL 在行业大数据应用中混合部署

行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。

在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。

当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。

集中化BI系统数据存储架构

集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。

结语

当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。

目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。

ssdb、minio性能测试c

项目上需要找一个硬盘型的NoSQL,用于将 Redis 中的冷数据落入硬盘。初步选型了几款 key-value 类型的NoSQL,分别有 levelDB、 rocksDB、 TiDB、 SSDB、swapDB、 Kvrocks、Tikv 。均为基于 levelDB 开发的几款NoSQL。其中因为 levelDB、rocksDB 无网络接口,不方便做分布式和高可用。, TiDB 过重,还有 swapDB 社区不够活跃且相关client API不完备。暂时选型 SSDB 。

项目需要存储的其实是一个略长的二进制字符串,初步认为,使用 对象存储 方案其实也可以替代NoSQL,所以压测对象添加当前非常火的云原生对象存储 MinIO

硬件名|配置 系统| Ubuntu(基于win10 wsl版的docker启动) 内存| 16GB(实际可用6.08G) CPU| Intel i5-8400

测试项目: 1. 写50M数据100次 2. 随机读取任意key 100次(对LRU机制不友好)

数据导入成功!

数据序列化成功!

a 数据大小:50.99295234680176 MB

第1次写入总用时: 797 ms

第2次写入总用时: 848 ms

第3次写入总用时: 3621 ms

第4次写入总用时: 813 ms

第5次写入总用时: 1862 ms

第6次写入总用时: 838 ms

第7次写入总用时: 2235 ms

第8次写入总用时: 836 ms

第9次写入总用时: 900 ms

第10次写入总用时: 1027 ms

第11次写入总用时: 1101 ms

第12次写入总用时: 880 ms

第13次写入总用时: 1956 ms

第14次写入总用时: 866 ms

第15次写入总用时: 2422 ms

第16次写入总用时: 852 ms

第17次写入总用时: 4511 ms

第18次写入总用时: 875 ms

第19次写入总用时: 2736 ms

第20次写入总用时: 814 ms

第21次写入总用时: 7172 ms

第22次写入总用时: 891 ms

第23次写入总用时: 7820 ms

第24次写入总用时: 836 ms

第25次写入总用时: 22103 ms

第26次写入总用时: 877 ms

第27次写入总用时: 2712 ms

第28次写入总用时: 841 ms

第29次写入总用时: 1928 ms

第30次写入总用时: 916 ms

第31次写入总用时: 839 ms

第32次写入总用时: 826 ms

第33次写入总用时: 7759 ms

第34次写入总用时: 843 ms

第35次写入总用时: 10670 ms

第36次写入总用时: 843 ms

第37次写入总用时: 9361 ms

第38次写入总用时: 821 ms

第39次写入总用时: 810 ms

第40次写入总用时: 794 ms

第41次写入总用时: 13281 ms

第42次写入总用时: 833 ms

第43次写入总用时: 811 ms

第44次写入总用时: 798 ms

第45次写入总用时: 18843 ms

第46次写入总用时: 911 ms

第47次写入总用时: 9428 ms

第48次写入总用时: 898 ms

第49次写入总用时: 17582 ms

第50次写入总用时: 903 ms

第51次写入总用时: 831 ms

第52次写入总用时: 800 ms

第53次写入总用时: 14602 ms

第54次写入总用时: 827 ms

第55次写入总用时: 5898 ms

第56次写入总用时: 856 ms

第57次写入总用时: 5693 ms

第58次写入总用时: 1050 ms

第59次写入总用时: 882 ms

第60次写入总用时: 1020 ms

第61次写入总用时: 15060 ms

第62次写入总用时: 902 ms

第63次写入总用时: 1062 ms

第64次写入总用时: 915 ms

第65次写入总用时: 7572 ms

第66次写入总用时: 823 ms

第67次写入总用时: 9649 ms

第68次写入总用时: 832 ms

第69次写入总用时: 10403 ms

第70次写入总用时: 907 ms

第71次写入总用时: 978 ms

第72次写入总用时: 789 ms

第73次写入总用时: 2111 ms

第74次写入总用时: 947 ms

第75次写入总用时: 4675 ms

第76次写入总用时: 944 ms

第77次写入总用时: 8592 ms

第78次写入总用时: 832 ms

第79次写入总用时: 2940 ms

第80次写入总用时: 842 ms

第81次写入总用时: 19835 ms

第82次写入总用时: 862 ms

第83次写入总用时: 7646 ms

第84次写入总用时: 873 ms

第85次写入总用时: 1002 ms

第86次写入总用时: 842 ms

第87次写入总用时: 9057 ms

第88次写入总用时: 801 ms

第89次写入总用时: 5117 ms

第90次写入总用时: 918 ms

第91次写入总用时: 798 ms

第92次写入总用时: 853 ms

第93次写入总用时: 7728 ms

第94次写入总用时: 810 ms

第95次写入总用时: 3969 ms

第96次写入总用时: 814 ms

第97次写入总用时: 2050 ms

第98次写入总用时: 819 ms

第99次写入总用时: 9566 ms

第100次写入总用时: 833 ms/pre

随机读

第1次读取 15总用时: 2251 ms

第2次读取 73总用时: 2045 ms

第3次读取 98总用时: 1548 ms

第4次读取 20总用时: 2683 ms

第5次读取 46总用时: 1156 ms

第6次读取 69总用时: 1160 ms

第7次读取 46总用时: 1520 ms

第8次读取 51总用时: 1381 ms

第9次读取 48总用时: 1000 ms

第10次读取 69总用时: 1400 ms

第11次读取 82总用时: 1236 ms

第12次读取 22总用时: 1140 ms

第13次读取 36总用时: 864 ms

第14次读取 66总用时: 843 ms

第15次读取 47总用时: 922 ms

第16次读取 17总用时: 885 ms

第17次读取 14总用时: 864 ms

第18次读取 64总用时: 888 ms

第19次读取 74总用时: 815 ms

第20次读取 33总用时: 866 ms

第21次读取 36总用时: 822 ms

第22次读取 78总用时: 975 ms

第23次读取 40总用时: 1186 ms

第24次读取 54总用时: 857 ms

第25次读取 92总用时: 963 ms

第26次读取 43总用时: 955 ms

第27次读取 38总用时: 853 ms

第28次读取 47总用时: 926 ms

第29次读取 62总用时: 877 ms

第30次读取 70总用时: 890 ms

第31次读取 88总用时: 895 ms

第32次读取 15总用时: 937 ms

第33次读取 3总用时: 993 ms

第34次读取 99总用时: 892 ms

第35次读取 76总用时: 818 ms

第36次读取 30总用时: 1020 ms

第37次读取 89总用时: 863 ms

第38次读取 99总用时: 819 ms

第39次读取 62总用时: 818 ms

第40次读取 1总用时: 871 ms

第41次读取 66总用时: 809 ms

第42次读取 68总用时: 847 ms

第43次读取 72总用时: 910 ms

第44次读取 50总用时: 1128 ms

第45次读取 47总用时: 898 ms

第46次读取 26总用时: 909 ms

第47次读取 35总用时: 872 ms

第48次读取 30总用时: 826 ms

第49次读取 79总用时: 904 ms

第50次读取 66总用时: 863 ms

第51次读取 2总用时: 885 ms

第52次读取 65总用时: 900 ms

第53次读取 67总用时: 1023 ms

第54次读取 16总用时: 934 ms

第55次读取 63总用时: 892 ms

第56次读取 9总用时: 894 ms

第57次读取 71总用时: 896 ms

第58次读取 20总用时: 947 ms

第59次读取 89总用时: 865 ms

第60次读取 57总用时: 872 ms

第61次读取 62总用时: 856 ms

第62次读取 14总用时: 881 ms

第63次读取 19总用时: 950 ms

第64次读取 14总用时: 876 ms

第65次读取 86总用时: 968 ms

第66次读取 12总用时: 911 ms

第67次读取 93总用时: 877 ms

第68次读取 59总用时: 886 ms

第69次读取 79总用时: 878 ms

第70次读取 49总用时: 869 ms

第71次读取 91总用时: 964 ms

第72次读取 38总用时: 838 ms

第73次读取 73总用时: 915 ms

第74次读取 8总用时: 875 ms

第75次读取 96总用时: 827 ms

第76次读取 98总用时: 826 ms

第77次读取 95总用时: 892 ms

第78次读取 36总用时: 843 ms

第79次读取 44总用时: 872 ms

第80次读取 89总用时: 863 ms

第81次读取 24总用时: 883 ms

第82次读取 89总用时: 804 ms

第83次读取 49总用时: 876 ms

第84次读取 81总用时: 873 ms

第85次读取 72总用时: 914 ms

第86次读取 68总用时: 861 ms

第87次读取 73总用时: 893 ms

第88次读取 4总用时: 880 ms

第89次读取 3总用时: 987 ms

第90次读取 76总用时: 896 ms

第91次读取 16总用时: 1010 ms

第92次读取 73总用时: 903 ms

第93次读取 83总用时: 933 ms

第94次读取 52总用时: 945 ms

第95次读取 48总用时: 901 ms

第96次读取 26总用时: 942 ms

第97次读取 37总用时: 883 ms

第98次读取 44总用时: 866 ms

第99次读取 89总用时: 921 ms

第100次读取 61总用时: 896 ms/pre

数据导入成功!

第1次写入总用时: 956 ms

第2次写入总用时: 912 ms

第3次写入总用时: 1241 ms

第4次写入总用时: 1564 ms

第5次写入总用时: 942 ms

第6次写入总用时: 3666 ms

第7次写入总用时: 1629 ms

第8次写入总用时: 1712 ms

第9次写入总用时: 977 ms

第10次写入总用时: 1515 ms

第11次写入总用时: 911 ms

第12次写入总用时: 1009 ms

第13次写入总用时: 1024 ms

第14次写入总用时: 1206 ms

第15次写入总用时: 984 ms

第16次写入总用时: 943 ms

第17次写入总用时: 954 ms

第18次写入总用时: 1033 ms

第19次写入总用时: 1008 ms

第20次写入总用时: 1121 ms

第21次写入总用时: 963 ms

第22次写入总用时: 949 ms

第23次写入总用时: 889 ms

第24次写入总用时: 1066 ms

第25次写入总用时: 1289 ms

第26次写入总用时: 1125 ms

第27次写入总用时: 1111 ms

第28次写入总用时: 953 ms

第29次写入总用时: 964 ms

第30次写入总用时: 1125 ms

第31次写入总用时: 998 ms

第32次写入总用时: 1993 ms

第33次写入总用时: 926 ms

第34次写入总用时: 920 ms

第35次写入总用时: 926 ms

第36次写入总用时: 1169 ms

第37次写入总用时: 1325 ms

第38次写入总用时: 1170 ms

第39次写入总用时: 1074 ms

第40次写入总用时: 1011 ms

第41次写入总用时: 931 ms

第42次写入总用时: 984 ms

第43次写入总用时: 1563 ms

第44次写入总用时: 905 ms

第45次写入总用时: 944 ms

第46次写入总用时: 1147 ms

第47次写入总用时: 1429 ms

第48次写入总用时: 934 ms

第49次写入总用时: 1133 ms

第50次写入总用时: 912 ms

第51次写入总用时: 953 ms

第52次写入总用时: 1127 ms

第53次写入总用时: 1065 ms

第54次写入总用时: 1323 ms

第55次写入总用时: 1003 ms

第56次写入总用时: 1489 ms

第57次写入总用时: 1377 ms

第58次写入总用时: 940 ms

第59次写入总用时: 1317 ms

第60次写入总用时: 912 ms

第61次写入总用时: 898 ms

第62次写入总用时: 934 ms

第63次写入总用时: 1005 ms

第64次写入总用时: 1729 ms

第65次写入总用时: 983 ms

第66次写入总用时: 1684 ms

第67次写入总用时: 908 ms

第68次写入总用时: 895 ms

第69次写入总用时: 1171 ms

第70次写入总用时: 1372 ms

第71次写入总用时: 1261 ms

第72次写入总用时: 1024 ms

第73次写入总用时: 1048 ms

第74次写入总用时: 904 ms

第75次写入总用时: 941 ms

第76次写入总用时: 928 ms

第77次写入总用时: 1806 ms

第78次写入总用时: 1052 ms

第79次写入总用时: 1030 ms

第80次写入总用时: 1092 ms

第81次写入总用时: 1117 ms

第82次写入总用时: 950 ms

第83次写入总用时: 933 ms

第84次写入总用时: 928 ms

第85次写入总用时: 935 ms

第86次写入总用时: 1908 ms

第87次写入总用时: 994 ms

第88次写入总用时: 1097 ms

第89次写入总用时: 930 ms

第90次写入总用时: 1052 ms

第91次写入总用时: 1119 ms

第92次写入总用时: 958 ms

第93次写入总用时: 987 ms

第94次写入总用时: 973 ms

第95次写入总用时: 2036 ms

第96次写入总用时: 891 ms

第97次写入总用时: 954 ms

第98次写入总用时: 951 ms

第99次写入总用时: 1044 ms

第100次写入总用时: 1366 ms/pre

随机读

第1次读取 46总用时: 40 ms

第2次读取 8总用时: 36 ms

第3次读取 28总用时: 26 ms

第4次读取 80总用时: 10 ms

第5次读取 77总用时: 13 ms

第6次读取 27总用时: 49 ms

第7次读取 86总用时: 20 ms

第8次读取 0总用时: 45 ms

第9次读取 54总用时: 34 ms

第10次读取 24总用时: 153 ms

第11次读取 78总用时: 29 ms

第12次读取 0总用时: 17 ms

第13次读取 91总用时: 56 ms

第14次读取 5总用时: 99 ms

第15次读取 23总用时: 138 ms

第16次读取 37总用时: 120 ms

第17次读取 40总用时: 156 ms

第18次读取 88总用时: 41 ms

第19次读取 76总用时: 32 ms

第20次读取 49总用时: 102 ms

第21次读取 20总用时: 179 ms

第22次读取 40总用时: 68 ms

第23次读取 6总用时: 215 ms

第24次读取 36总用时: 197 ms

第25次读取 37总用时: 30 ms

第26次读取 68总用时: 154 ms

第27次读取 14总用时: 314 ms

第28次读取 27总用时: 91 ms

第29次读取 51总用时: 255 ms

第30次读取 66总用时: 166 ms

第31次读取 86总用时: 140 ms

第32次读取 29总用时: 374 ms

第33次读取 96总用时: 235 ms

第34次读取 68总用时: 72 ms

第35次读取 74总用时: 264 ms

第36次读取 11总用时: 334 ms

第37次读取 55总用时: 316 ms

第38次读取 31总用时: 287 ms

第39次读取 93总用时: 233 ms

第40次读取 44总用时: 499 ms

第41次读取 26总用时: 312 ms

第42次读取 76总用时: 33 ms

第43次读取 11总用时: 31 ms

第44次读取 86总用时: 191 ms

第45次读取 96总用时: 217 ms

第46次读取 20总用时: 145 ms

第47次读取 1总用时: 772 ms

第48次读取 69总用时: 477 ms

第49次读取 9总用时: 320 ms

第50次读取 46总用时: 42 ms

第51次读取 34总用时: 823 ms

第52次读取 76总用时: 115 ms

第53次读取 62总用时: 635 ms

第54次读取 99总用时: 596 ms

第55次读取 64总用时: 657 ms

第56次读取 66总用时: 97 ms

第57次读取 18总用时: 461 ms

第58次读取 91总用时: 247 ms

第59次读取 46总用时: 147 ms

第60次读取 12总用时: 702 ms

第61次读取 79总用时: 545 ms

第62次读取 47总用时: 956 ms

第63次读取 17总用时: 853 ms

第64次读取 97总用时: 771 ms

第65次读取 74总用时: 368 ms

第66次读取 84总用时: 790 ms

第67次读取 72总用时: 866 ms

第68次读取 82总用时: 742 ms

第69次读取 93总用时: 313 ms

第70次读取 57总用时: 917 ms

第71次读取 61总用时: 1185 ms

第72次读取 66总用时: 162 ms

第73次读取 5总用时: 168 ms

第74次读取 68总用时: 275 ms

第75次读取 43总用时: 1108 ms

第76次读取 74总用时: 281 ms

第77次读取 65总用时: 955 ms

第78次读取 22总用时: 1169 ms

第79次读取 88总用时: 501 ms

第80次读取 80总用时: 1685 ms

第81次读取 92总用时: 1286 ms

第82次读取 89总用时: 1680 ms

第83次读取 30总用时: 1537 ms

第84次读取 41总用时: 1576 ms

第85次读取 2总用时: 2193 ms

第86次读取 52总用时: 1817 ms

第87次读取 8总用时: 323 ms

第88次读取 81总用时: 1409 ms

第89次读取 40总用时: 577 ms

第90次读取 88总用时: 598 ms

第91次读取 19总用时: 2324 ms

第92次读取 75总用时: 2275 ms

第93次读取 29总用时: 668 ms

第94次读取 77总用时: 2773 ms

第95次读取 62总用时: 484 ms

第96次读取 84总用时: 883 ms

第97次读取 32总用时: 2945 ms

第98次读取 44总用时: 884 ms

第99次读取 66总用时: 631 ms

第100次读取 38总用时: 2739 ms/pre

非常奇怪的是 MinIO 整体性能略优于 SSDB 但是理论上不太应该, SSDB 怎么说也是半内存半硬盘的NoSQL不应该比纯硬盘的 MinIO 性能要差,有可能是 SSDB 写到一定数据量后把本机内存写爆了,导致读写非常慢。但这变相验证了 SSDB 在极端情况下的不稳定。

tidb待遇

待遇不错。

tidb和mysql几乎完全兼容,所以我们的程序没有任何改动就完成了数据库从mysql到TiDb的转换,TiDB 是一个分布式 NewSQL (SQL 、 NoSQL 和 NewSQL 的优缺点比较 )数据库。它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。

2019数据架构选型必读:1月数据库产品技术解析

本期目录

DB-Engines数据库排行榜

新闻快讯

一、RDBMS家族

二、NoSQL家族

三、NewSQL家族

四、时间序列

五、大数据生态圈

六、国产数据库概览

七、云数据库

八、推出dbaplus Newsletter的想法

九、感谢名单

为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录

进行下载。

DB-Engines数据库排行榜

以下取自2019年1月的数据,具体信息可以参考,数据仅供参考。

DB-Engines排名的数据依据5个不同的因素:

新闻快讯

1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。

2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。

3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。

4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。

5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。

今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。

6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:

7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。

8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。

RDBMS家族

Oracle 发布18.3版本

2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。

Oracle Database 18c及19c部分关键功能:

1、性能

2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性

3、高可用

4、数据仓库和大数据

MySQL发布8.0.13版本

1、账户管理

经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。

2、配置

Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。

3、字段默认值

BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。

4、优化器

1)Skip Scan

非前缀索引也可以用了。

之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 40) 和(f1 = 2 AND f2 40)的查询结果合并。

2)函数索引

之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。

5、SQL语法

GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能变化

1)设置用户变量,请使用SET语句

如下类型语句将要被废弃SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。

3)新增会话级临时表空间

在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。

4)在线切换Group Replication的状态

5)新增了group_replication_member_expel_timeout

之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。

group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update连表更新,limit语句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

2)update连表更新,ORDER BY and LIMIT语句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

参考:

2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL

Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!

有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):

针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。

例:

如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。

参考:

3、MariaDB Window Functions窗口函数分组取TOP N记录

窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。

参考:

Percona Server发布8.0 GA版本

2018年12月21日,Percona发布了Percona Server 8.0 GA版本。

在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:

1、安全性和合规性

2、性能和可扩展性

3、可观察性和可用性

Percona Server for MySQL 8.0中将要被废用功能:

Percona Server for MySQL 8.0中删除的功能:

RocksDB发布V5.17.2版本

2018年10月24日,RocksDB发布V5.17.2版本。

RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。

PostgreSQL发布11版本

2018年10月18日,PostgreSQL 11发布。

1、PostgreSQL 11的重大增强

2、PostgreSQL 插件动态

1)分布式插件citus发布 8.1

citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。

2)地理信息插件postgis发布2.5.1

PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。

3)时序插件timescale发布1.1.1

timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。

4)流计算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。

3、PostgreSQL衍生开源产品动态

1)agensgraph发布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。

2)gpdb发布5.15

gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。

3)antdb发布3.2

antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。

4)迁移工具MTK发布52版本

MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。

DB2发布 11.1.4.4版本

DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:

1、性能

2、高可用

3、管理视图

4、应用开发方面

5、联邦功能

6、pureScale

NoSQL家族

Redis发布5.0.3版本

MongoDB升级更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。

MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。

MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。

本期新秀:Cassandra发布3.11.3版本

2018年8月11日,Cassandra发布正式版3.11.3。

Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。

Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。

3.11.3版本的一些bug fix和改进:

NewSQL家族

TiDB 发布2.1.2版本

2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。

TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。

TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB发布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式发布。

作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:

CockroachDB发布2.1版本

2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:

新增企业级特性:

新增SQL特性:

新增内核特性:

Admin UI增强:

时间序列

本期新秀:TimescaleDB发布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。

TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。

TimescaleDB架构:

数据自动按时间和空间分片(chunk)

更新亮点:

大数据生态圈

Hadoop发布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:

Greenplum 发布5.15版本

Greenplum最新的5.15版本中发布了流式数据加载工具。

该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:

国产数据库概览

K-DB发布数据库一体机版

2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:

OceanBase迁移服务发布1.0版本

1月4日,OceanBase 正式发布OMS迁移服务1.0版本。

以下内容包含 OceanBase 迁移服务的重要特性和功能:

SequoiaDB发布3.0.1新版本

1、架构

1)完整计算存储分离架构,兼容MySQL协议、语法

计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。

SequoiaDB巨杉数据库“计算-存储分离”架构详细示意

用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。

2、其他更新信息

1)接口变更:

2)主要特性:

云数据库

本期新秀:腾讯发布数据库CynosDB,开启公测

1、News

1)腾讯云数据库MySQL2018年重大更新:

2)腾讯云数据库MongoDB2018年重大更新:

3)腾讯云数据库Redis/CKV+2018年重大更新:

4)腾讯云数据库CTSDB2018年重大更新:

2、Redis 4.0集群版商业化上线

2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。

产品特性:

使用场景:

官网文档:

3、腾讯自研数据库CynosDB发布,开启公测

2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。

本期新秀:京东云DRDS发布1.0版本

12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。

DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。

京东云DRDS产品有以下主要特性

1)自动分库分表

通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。

2)分布式架构

基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。

3)超强性能

具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。

4)兼容MySQL

兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。

参考链接:

RadonDB发布1.0.3版本

2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。

我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。

至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn

感谢名单

最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。

往期回顾:

↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~

TiDB 的数据迁移工具现已开源

TiDB 是国内 PingCAP 团队开发的一个分布式 SQL 数据库,支持包括传统 RDBMS 和 NoSQL 的特性。现已将 DM(data migration platform,该数据迁移工具)开源。

该数据迁移工具遵循 Apache-2.0 开源协议,允许用户自由地使用及修改。

据介绍,DM (Data Migration) 是一体化数据同步任务管理平台,支持从 MySQL/MariaDB 到 TiDB 的数据迁移、全量备份和 MariaDB/MySQL binlog 增量同步,有助于减少操作成本和简化错误处理流程。架构图如下所示:

从架构图可以看到,DM 包括三大组件:DM-master、DM-worker 和 dmctl。其中,DM-master 管理和调度数据同步任务的操作、DM-worker 执行特定的数据同步任务、dmctl 则是控制 DM 集群的命令行工具。更详细的组件功能介绍,可以查阅官方文档。


文章题目:tidbnosql的简单介绍
分享网址:http://scpingwu.com/article/dsgdsoi.html