小编给大家分享一下PyTorch中梯度下降及反向传播的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!
站在用户的角度思考问题,与客户深入沟通,找到蒙自网站设计与蒙自网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广、国际域名空间、网站空间、企业邮箱。业务覆盖蒙自地区。线性模型
线性模型介绍
线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集。训练集包括(x,y),x为特征,y为目标。如下图:
将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w。当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数:
线性模型例子
下面通过一个例子可以观察不同权重(w)对模型损失函数的影响。
#author:yuquanle #data:2018.2.5 #Study of Linear Model import numpy as np import matplotlib.pyplot as plt x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] def forward(x): return x * w def loss(x, y): y_pred = forward(x) return (y_pred - y)*(y_pred - y) w_list = [] mse_list = [] for w in np.arange(0.0, 4.1, 0.1): print("w=", w) l_sum = 0 for x_val, y_val in zip(x_data, y_data): # error l = loss(x_val, y_val) l_sum += l print("MSE=", l_sum/3) w_list.append(w) mse_list.append(l_sum/3) plt.plot(w_list, mse_list) plt.ylabel("Loss") plt.xlabel("w") plt.show() 输出结果: w= 0.0 MSE= 18.6666666667 w= 0.1 MSE= 16.8466666667 w= 0.2 MSE= 15.12 w= 0.3 MSE= 13.4866666667 w= 0.4 MSE= 11.9466666667 w= 0.5 MSE= 10.5 w= 0.6 MSE= 9.14666666667
调整w,loss变化图:
可以发现当w=2时,loss最小。但是现实中最常见的情况是,我们知道数据集,定义好损失函数之后(loss),我们并不会从0到n去设置w的值,然后求loss,最后选取使得loss最小的w作为最佳模型的参数。更常见的做法是,首先随机初始化w的值,然后根据loss函数定义对w求梯度,然后通过w的梯度来更新w的值,这就是经典的梯度下降法思想。
梯度下降法
梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率大(为该梯度的模)。
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。即每次更新参数w减去其梯度(通常会乘以学习率)。
#author:yuquanle #data:2018.2.5 #Study of SGD x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # any random value w = 1.0 # forward pass def forward(x): return x * w def loss(x, y): y_pred = forward(x) return (y_pred - y)*(y_pred - y) # compute gradient (loss对w求导) def gradient(x, y): return 2*x*(x*w - y) # Before training print("predict (before training)", 4, forward(4)) # Training loop for epoch in range(20): for x, y in zip(x_data, y_data): grad = gradient(x, y) w = w - 0.01 * grad print("\t grad: ",x, y, grad) l = loss(x, y) print("progress:", epoch, l) # After training print("predict (after training)", 4, forward(4)) 输出结果: predict (before training) 4 4.0 grad: 1.0 2.0 -2.0 grad: 2.0 4.0 -7.84 grad: 3.0 6.0 -16.2288 progress: 0 4.919240100095999 grad: 1.0 2.0 -1.478624 grad: 2.0 4.0 -5.796206079999999 grad: 3.0 6.0 -11.998146585599997 progress: 1 2.688769240265834 grad: 1.0 2.0 -1.093164466688 grad: 2.0 4.0 -4.285204709416961 grad: 3.0 6.0 -8.87037374849311 progress: 2 1.4696334962911515 grad: 1.0 2.0 -0.8081896081960389 grad: 2.0 4.0 -3.1681032641284723 grad: 3.0 6.0 -6.557973756745939 progress: 3 0.8032755585999681 grad: 1.0 2.0 -0.59750427561463 grad: 2.0 4.0 -2.3422167604093502 grad: 3.0 6.0 -4.848388694047353 progress: 4 0.43905614881022015 grad: 1.0 2.0 -0.44174208101320334 grad: 2.0 4.0 -1.7316289575717576 grad: 3.0 6.0 -3.584471942173538 progress: 5 0.2399802903801062 grad: 1.0 2.0 -0.3265852213980338 grad: 2.0 4.0 -1.2802140678802925 grad: 3.0 6.0 -2.650043120512205 progress: 6 0.1311689630744999 grad: 1.0 2.0 -0.241448373202223 grad: 2.0 4.0 -0.946477622952715 grad: 3.0 6.0 -1.9592086795121197 progress: 7 0.07169462478267678 grad: 1.0 2.0 -0.17850567968888198 grad: 2.0 4.0 -0.6997422643804168 grad: 3.0 6.0 -1.4484664872674653 progress: 8 0.03918700813247573 grad: 1.0 2.0 -0.13197139106214673 grad: 2.0 4.0 -0.5173278529636143 grad: 3.0 6.0 -1.0708686556346834 progress: 9 0.021418922423117836 predict (after training) 4 7.804863933862125
反向传播
但是在定义好模型之后,使用pytorch框架不需要我们手动的求导,我们可以通过反向传播将梯度往回传播。通常有二个过程,forward和backward:
#author:yuquanle #data:2018.2.6 #Study of BackPagation import torch from torch import nn from torch.autograd import Variable x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # Any random value w = Variable(torch.Tensor([1.0]), requires_grad=True) # forward pass def forward(x): return x*w # Before training print("predict (before training)", 4, forward(4)) def loss(x, y): y_pred = forward(x) return (y_pred-y)*(y_pred-y) # Training: forward, backward and update weight # Training loop for epoch in range(10): for x, y in zip(x_data, y_data): l = loss(x, y) l.backward() print("\t grad:", x, y, w.grad.data[0]) w.data = w.data - 0.01 * w.grad.data # Manually zero the gradients after running the backward pass and update w w.grad.data.zero_() print("progress:", epoch, l.data[0]) # After training print("predict (after training)", 4, forward(4)) 输出结果: predict (before training) 4 Variable containing: 4 [torch.FloatTensor of size 1] grad: 1.0 2.0 -2.0 grad: 2.0 4.0 -7.840000152587891 grad: 3.0 6.0 -16.228801727294922 progress: 0 7.315943717956543 grad: 1.0 2.0 -1.478623867034912 grad: 2.0 4.0 -5.796205520629883 grad: 3.0 6.0 -11.998146057128906 progress: 1 3.9987640380859375 grad: 1.0 2.0 -1.0931644439697266 grad: 2.0 4.0 -4.285204887390137 grad: 3.0 6.0 -8.870372772216797 progress: 2 2.1856532096862793 grad: 1.0 2.0 -0.8081896305084229 grad: 2.0 4.0 -3.1681032180786133 grad: 3.0 6.0 -6.557973861694336 progress: 3 1.1946394443511963 grad: 1.0 2.0 -0.5975041389465332 grad: 2.0 4.0 -2.3422164916992188 grad: 3.0 6.0 -4.848389625549316 progress: 4 0.6529689431190491 grad: 1.0 2.0 -0.4417421817779541 grad: 2.0 4.0 -1.7316293716430664 grad: 3.0 6.0 -3.58447265625 progress: 5 0.35690122842788696 grad: 1.0 2.0 -0.3265852928161621 grad: 2.0 4.0 -1.2802143096923828 grad: 3.0 6.0 -2.650045394897461 progress: 6 0.195076122879982 grad: 1.0 2.0 -0.24144840240478516 grad: 2.0 4.0 -0.9464778900146484 grad: 3.0 6.0 -1.9592113494873047 progress: 7 0.10662525147199631 grad: 1.0 2.0 -0.17850565910339355 grad: 2.0 4.0 -0.699742317199707 grad: 3.0 6.0 -1.4484672546386719 progress: 8 0.0582793727517128 grad: 1.0 2.0 -0.1319713592529297 grad: 2.0 4.0 -0.5173273086547852 grad: 3.0 6.0 -1.070866584777832 progress: 9 0.03185431286692619 predict (after training) 4 Variable containing: 7.8049 [torch.FloatTensor of size 1] Process finished with exit code 0
看完了这篇文章,相信你对“PyTorch中梯度下降及反向传播的示例分析”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
分享标题:PyTorch中梯度下降及反向传播的示例分析-创新互联
转载注明:http://scpingwu.com/article/dpjdsi.html