怎样用 Python 进行数据分析?
做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法
公司主营业务:网站建设、网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联建站是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联建站推出克拉玛依免费做网站回馈大家。
那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等
所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,
之后再学怎么分析。
Python数据分析师主要做什么?Python基础
伴随着大数据时代的到来,Python的热度居高不下,已成为职场人士必备的技能,它不仅可以从事网络爬虫、人工智能、Web开发、游戏开发等工作,还是数据分析的首选语言。那么问题来了,利用Python数据分析可以做什么呢?简单来讲,可以做的事情有很多,具体如下。
第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Lsnull是Python中检查空置的函数,你可以对整个数据进行检查,也可以单独对某一列进行空置检查,返回的结果是逻辑值,包括空置返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。
第二,数据表清洗
Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包括空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是asstype函数,用来更改数据格式,Rename是更改名称的函数,drop_duplicate函数函数重复值,replace函数实现数据转换。
第三,数据预处理
数据预处理是对清洗完的数据进行整理以便后期统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组以及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。
第四,数据提取
主要是使用三个函数:loc、iloc和ix,其中loc函数按标准值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提取数据意外,还可以按照具体的条件进行提取。
第五,数据筛选汇总
Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。
Python 基本操作- 数据选取loc、iloc、ix函数
loc中的数据是列名,是字符串,所以前后都要取;iloc中数据是int整型,所以是Python默认的前闭后开
构建数据集df
loc函数主要通过行标签索引行数据 ,划重点, 标签!标签!标签!
loc[1] 选择行标签是1的(从0、1、2、3这几个行标签中)
loc[0:1] 和 loc[0,1]的区别,其实最重要的是loc[0:1]和iloc[0:1]
索引某一列数据,loc[:,0:1],还是标签,注意,如果列标签是个字符,比如'a',loc['a']是不行的,必须为loc[:,'a']。
但如果行标签是'a',选取这一行,用loc['a']是可以的。
iloc 主要是通过行号获取行数据,划重点,序号!序号!序号!
iloc[0:1],由于Python默认是前闭后开,所以,这个选择的只有第一行!
如果想用标签索引,如iloc['a'],就会报错,它只支持int型。
ix——结合前两种的混合索引,即可以是行序号,也可以是行标签。
如选择prize10(prize为一个标签)的,即 df.loc[df.prize10]
还有并或等操作
python选取特定列——pandas的iloc和loc以及icol使用
pandas入门——loc与iloc函数
pandas中loc、iloc、ix的区别
pandas基础之按行取数(DataFrame)
python数据分析可以做什么工作
现在互联网发展迅速,众多行业巨头,都已经转投到人工智能领域,而人工智能的首选编程语言就是python,所以学好Python能够从事的工作还是很多的,而且前景非常不错。
学完python可以应用于以下领域:
①Web 和 Internet开发
②科学计算和统计
③人工智能
④桌面界面开发
⑤软件开发
⑥后端开发
⑦网络爬虫
可以从事的岗位也很多,比如Python爬虫工程师,大数据工程师等等!
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
python数据分析是干什么的
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
类型(推荐学习:Python视频教程)
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基(John Tukey)命名。
定性数据分析又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析
建议大家使用python进行数据分析,原因有以下四点:
python语言非常的简单、易学,适合初学者作为入门语言
Python的语法简单,代码可读性高,容易入门,有利于初学者学习。举个例子,假如我们在处理数据的时候,希望把用户性别数据数值化,也就是变成计算机可以运算的数字形式,我们可以直接用一行列表推导式完成,十分的简洁,
python拥有强大的通用编程能力
不同于R或者matlab,python不仅在数据分析方面能力强大,在爬虫、web、自动化运维甚至游戏等等很多领域都有广泛的应用。这就使公司使用一种技术完成全部服务成为可能,有利于各个技术组之间的业务融合。比如,我们用python的爬虫框架scrapy爬取数据,然后交给pandas做数据处理,最后使用python的web框架django给用户作展示,这一系列任务可以全部用python完成,能大大提高公司的技术效率。
Python拥有一个巨大而活跃的科学计算社区
Python在数据分析和交互、探索性计算以及数据可视化等方面都有非常成熟的库和活跃的社区,使python成为数据处理任务重要解决方案。在科学计算方面,python拥有numpy、pandas、matplotpb、scikit-learn、ipython等等一系列非常优秀的库和工具,特别是pandas在处理中型数据方面可以说有着无与伦比的优势,正在成为各行业数据处理任务的首选库。
python是人工智能时代的通用语言
在人工智能火热的今天,python已经成为了最受欢迎的编程语言。得益于python的简洁、丰富的库和社区,大部分深度学习框架都优先支持python语言编程,比如当今最火热的深度学习框架tensorflow,它虽然是C++编写的,但对python语言支持最好。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据分析是干什么的的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
名称栏目:locpython函数 load函数python
网站链接:http://scpingwu.com/article/dooojps.html