go语言copy函数介绍的疑惑
go语言我不懂,但是看似乎懂了,仅供参考
创新互联专注于茌平网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供茌平营销型网站建设,茌平网站制作、茌平网页设计、茌平网站官网定制、小程序开发服务,打造茌平网络公司原创品牌,更为您提供茌平网站排名全网营销落地服务。
意思是源和目标可以为同一目标,复制的数量是源或者目标的元素最小数量
比如例子中的copy(s,a[0]:)
a虽然一共有8个元素,但是s只有6len(det)个元素 ,看上面的makeint是6
所以这里只复制了最小数量6个元素,因此a的012345被复制进了s
第二个
copy(s,s[2]:)
这里是从s[2]开始,所以len是6-2=4,而且因为46,只复制4个元素
因此
0 1 2 3 4 5 复制后4个元素到前面结果就是:
2 3 4 5 4 5 //这个就是可以源和目标可重叠,
上面的也说明了按照len(str)和len(det)中最少值
如何看待go语言泛型的最新设计?
Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成为现实。Go 团队实施了一个看起来比较稳定的设计草案,并且正以源到源翻译器原型的形式获得关注。本文讲述的是泛型的最新设计,以及如何自己尝试泛型。
例子
FIFO Stack
假设你要创建一个先进先出堆栈。没有泛型,你可能会这样实现:
type Stack []interface{}func (s Stack) Peek() interface{} {
return s[len(s)-1]
}
func (s *Stack) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack) Push(value interface{}) {
*s =
append(*s, value)
}
但是,这里存在一个问题:每当你 Peek 项时,都必须使用类型断言将其从 interface{} 转换为你需要的类型。如果你的堆栈是 *MyObject 的堆栈,则意味着很多 s.Peek().(*MyObject)这样的代码。这不仅让人眼花缭乱,而且还可能引发错误。比如忘记 * 怎么办?或者如果您输入错误的类型怎么办?s.Push(MyObject{})` 可以顺利编译,而且你可能不会发现到自己的错误,直到它影响到你的整个服务为止。
通常,使用 interface{} 是相对危险的。使用更多受限制的类型总是更安全,因为可以在编译时而不是运行时发现问题。
泛型通过允许类型具有类型参数来解决此问题:
type Stack(type T) []Tfunc (s Stack(T)) Peek() T {
return s[len(s)-1]
}
func (s *Stack(T)) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack(T)) Push(value T) {
*s =
append(*s, value)
}
这会向 Stack 添加一个类型参数,从而完全不需要 interface{}。现在,当你使用 Peek() 时,返回的值已经是原始类型,并且没有机会返回错误的值类型。这种方式更安全,更容易使用。(译注:就是看起来更丑陋,^-^)
此外,泛型代码通常更易于编译器优化,从而获得更好的性能(以二进制大小为代价)。如果我们对上面的非泛型代码和泛型代码进行基准测试,我们可以看到区别:
type MyObject struct {
X
int
}
var sink MyObjectfunc BenchmarkGo1(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek().(MyObject)
}
}
func BenchmarkGo2(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack(MyObject)
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek()
}
}
结果:
BenchmarkGo1BenchmarkGo1-16 12837528 87.0 ns/op 48 B/op 2 allocs/opBenchmarkGo2BenchmarkGo2-16 28406479 41.9 ns/op 24 B/op 2 allocs/op
在这种情况下,我们分配更少的内存,同时泛型的速度是非泛型的两倍。
合约(Contracts)
上面的堆栈示例适用于任何类型。但是,在许多情况下,你需要编写仅适用于具有某些特征的类型的代码。例如,你可能希望堆栈要求类型实现 String() 函数
Go语言编译器TinyGo,基于LLVM,在微控制器和小系统上编译和运行
TinyGo是一个为微控制器、WebAssembly(Wasm)和命令行工具等小型场景设计的Go语言编译器。TinyGo重用了Go语言工具和LLVM使用的库,以编译用Go语言编写的程序。目前,该项目在GitHub上已经积累了10.1k的Star。
如下为一个示例程序,当运行在任何支持的带板载LED的主板上时,则会点亮内置LED。
上述程序可以在单片机、Adafruit ItsyBitsy M0微控制器或任何支持的带内置LED的板上进行编译和不需要修改的运行,只要设置正确的TinyGo编译器目标即可。例如,设置如下目标可以编译和点亮 单片机。
项目概述
TinyGo项目旨在将Go语言引入到具有单进程或核心的微控制器和小系统。TinyGo类似于emgo,但主要的区别在于作者想要保留Go内存模型。另一个区别在于TinyGo在内部使用LLVM,因而可以获得更小更高效的代码以及更高的灵活性。
创建TinyGo项目的初衷是,如果Python可以在微控制器上运行,Go语言当然也应该能够在更低级微设备上运行。
支持设备
你可以为微控制器、WebAssembly和Linux编译TinyGo程序。目前,TinyGo支持以下85种微处理器板。
更多技术细节请参阅原项目。
本文名称:go语言小公举 go go go小
转载来源:http://scpingwu.com/article/doojjje.html