RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
python算密度函数 python计算概率密度

如何用Python实现“estimate the means and variances”

数据要拟合正态分布,实际上就是计算样本的均值和伪方差,用这两个数据直接带入正态分布的概率密度函数。

岱山网站建设公司成都创新互联公司,岱山网站设计制作,有大型网站制作公司丰富经验。已为岱山上1000家提供企业网站建设服务。企业网站搭建\外贸网站制作要多少钱,请找那个售后服务好的岱山做网站的公司定做!

所以代码是很好写的。

import numpy as np

from scipy.stats import norm

import matplotlib.pyplot as plt

m = np.mean(data)

s = np.std(data)

plt.plot(norm.pdf(data, m, s))

如何用python求出某已知正态分布的概率密度

算出平均值和标准差μ、σ,代入正态分布密度函数表达式:

f(x) = exp{-(x-μ)2/2σ2}/[√(2π)σ]

给定x值,即可算出f值。

如何根据概率密度函数生成随机数

如何根据概率密度函数生成随机数

我这里并不是要讲“伪随机”、“真随机”这样的问题,而是关于如何生成服从某个概率分布的随机数(或者说 sample)的问题。比如,你想要从一个服从正态分布的随机变量得到 100 个样本,那么肯定抽到接近其均值的样本的概率要大许多,从而导致抽到的样本很多是集中在那附近的。当然,要解决这个问题,我们通常都假设我们已经有了一个 生成 0 到 1 之间均匀分布的随机数的工具,就好像 random.org 给我们的结果那样,事实上许多时候我们也并不太关心它们是真随机数还是伪随机数,看起来差不多就行了。 :p

现在再回到我们的问题,看起来似乎是很简单的,按照概率分布的话,只要在概率密度大的地方多抽一些样本不就行了吗?可是具体要怎么做呢?要真动起手 来,似乎有不是那么直观了。实际上,这个问题曾经也是困扰了我很久,最近又被人问起,那我们不妨在这里一起来总结一下。为了避免一下子就陷入抽象的公式推 导,那就还是从一个简单的具体例子出发好了,假设我们要抽样的概率分布其概率密度函数为 p(x) = \frac{1}{9}x^2 ,并且被限制在区间 [0, 3] 上,如右上图所示。

好了,假设现在我们要抽 100 个服从这个分布的随机数,直观上来讲,抽出来的接近 3 的数字肯定要比接近 0 的数字要多。那究竟要怎样抽才能得到这样的结果呢?由于我们实际上是不能控制最原始的随机数生成过程的,我们只能得到一组均匀分布的随机数,而这组随机数 的生成过程对于我们完全是透明的,所以,我们能做的只有把这组均匀分布的随机数做一些变换让他符合我们的需求。找到下手的点了,可是究竟要怎样变换呢?有 一个变换相信大家都是很熟悉的,假设我们有一组 [0,1] 之间的均匀分布的随机数 X_0 ,那么令 X_1=3X_0 的话,X_1 就是一组在 [0,3] 之间均匀分布的随机数了,不难想象,X_1 等于某个数 x^* 的概率就是 X_0 等于 x^*/3 的概率(“等于某个数的概率”这种说法对于连续型随机变量来说其实是不合适的,不过大概可以理解所表达的意思啦)。似乎有一种可以“逆转回去”的感觉了。

于是让我们来考虑更一般的变换。首先,我们知道 X_1 的概率密度函数是 f(x) = 1/3, x\in[0,3] ,假设现在我们令 Y = \phi (X_1) ,不妨先假定 \phi(\cdot) 是严格单调递增的函数,这样我们可以求其逆函数 \phi^{-1}(\cdot) (也是严格单调递增的)。现在来看变换后的随机变量 Y 会服从一个什么样的分布呢?

这里需要小心,因为这里都是连续型的随机变量,并不像离散型随机变量那样可以说成“等于某个值的概率”,因此我们需要转换为概率分布函数来处理,也就是求一个积分啦:

\displaystyle F(x) = P(X \leq x) = \int_{-\infty}^x f(t)dt

那么 X_1 的概率分布函数为 F(x) = \frac{1}{3}x 。很显然 Y 小于或等于某个特定的值 y^* 这件事情是等价于 X_1=\phi^{-1}(Y)\leq\phi^{-1}(y^*) 这件事情的。换句话说,P(Y\leq y^*) 等于 P(X_1 \leq \phi^{-1}(y^*)) 。于是,Y 的概率分布函数就可以得到了:

\displaystyle G(y) = P(Y \leq y) = P(X_1 \leq \phi^{-1}(y)) = F(\phi^{-1}(y))

再求导我们就能得到 Y 的概率密度函数:

\displaystyle g(y) = \frac{dG(y)}{dy} = f(\phi^{-1}(y))\frac{d}{dy}\phi^{-1}(y)

这样一来,我们就得到了对于一个随机变量进行一个映射 \phi(\cdot) 之后得到的随即变量的分布,那么,回到我们刚才的问题,我们想让这个结果分布就是我们所求的,然后再反推得 \phi(\cdot) 即可:

\displaystyle \frac{1}{9}y^2 = g(y) = f(\phi^{-1}(y))\frac{d}{dy}\phi^{-1}(y) = \frac{1}{3}\frac{d}{dy}\phi^{-1}(y)

经过简单的化简就可以得到 \phi^{-1}(y) = \frac{1}{9} y^3 ,亦即 \phi(x) = (9x)^{1/3} 。也就是说,把得到的随机数 X_1 带入到到函数 \phi(\cdot) 中所得到的结果,就是符合我们预期要求的随机数啦! :D 让我们来验证一下:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#!/usr/bin/python import numpy as np import matplotlib.pyplot as plot N = 10000 X0 = np.random.rand(N) X1 = 3*X0 Y = np.power(9*X1, 1.0/3) t = np.arange(0.0, 3.0, 0.01) y = t*t/9 plot.plot(t, y, 'r-', linewidth=1) plot.hist(Y, bins=50, normed=1, facecolor='green', alpha=0.75)plot.show()

这就没错啦,目的达成啦!让我们来总结一下。问题是这样的,我们有一个服从均匀分布的随机变量 X ,它的概率密度函数为一个常数 f(x)=C ,如果是 [0,1] 上的分布,那么常数 C 就直接等于 1 了。现在我们要得到一个随机变量 Y 使其概率密度函数为 g(y) ,做法就是构造出一个函数 \phi(\cdot) 满足(在这里加上了绝对值符号,这是因为 \phi(\cdot) 如果不是递增而是递减的话,推导的过程中有一处就需要反过来)

\displaystyle g(y) = f(\phi^{-1}(y))\left|\frac{d}{dy}\phi^{-1}(y)\right| = C\left|\frac{d}{dy}\phi^{-1}(y)\right|

反推过来就是,对目标 y 的概率密度函数求一个积分(其实就是得到它的概率分布函数 CDF ,如果一开始就拿到的是 CDF 当然更好),然后求其反函数就可以得到需要的变换 \phi(\cdot) 了。实际上,这种方法有一个听起来稍微专业一点的名字:Inverse Transform Sampling Method 。不过,虽然看起来很简单,但是实际操作起来却比较困难,因为对于许多函数来说,求逆是比较困难的,求积分就更困难了,如果写不出解析解,不得已只能用数 值方法来逼近的话,计算效率就很让人担心了。可事实上也是如此,就连我们最常见的一维标准正态分布,也很难用这样的方法来抽样,因为它的概率密度函数

\displaystyle g(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}

的不定积分没有一个解析形式。这可真是一点也不好玩,费了这么大劲,结果好像什么都干不了。看来这个看似简单的问题似乎还是比较复杂的,不过也不要灰心,至少对于高斯分布来说,我们还有一个叫做 Box Muller 的方法可以专门来做这个事情。因为高斯分布比较奇怪,虽然一维的时候概率分布函数无法写出解析式,但是二维的情况却可以通过一些技巧得出一个解析式来。

首先我们来考虑一个二维的且两个维度相互独立的高斯分布,它的概率密度函数为

\displaystyle f(x,y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\cdot\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}

这个分布是关于原点对称的,如果考虑使用极坐标 (\theta,r) (其中 \theta\in[0,2\pi), r\in[0,\infty) )的话,我们有 x = r\cos\theta,y=r\sin\theta 这样的变换。这样,概率密度函数是写成:

\displaystyle f(\theta,r) = \frac{1}{2\pi}e^{-\frac{r^2}{2}}

注意到在给定 r 的情况下其概率密度是不依赖于 \theta 的,也就是说对于 \theta 来说是一个均匀分布,这和我们所了解的标准正态分布也是符合的:在一个圆上的点的概率是相等的。确定了 \theta 的分布,让我们再来看 r,用类似于前面的方法:

\displaystyle \begin{aligned} P(rR) = \int_0^{2\pi}\int_0^R\frac{1}{2\pi}e^{\frac{r^2}{2}}rdrd\theta \ = \int_0^Re^{-\frac{r^2}{2}}rdr \ = 1-e^{-\frac{R^2}{2}} \end{aligned}

根据前面得出的结论,我现在得到了 r 的概率分布函数,是不是只要求一下逆就可以得到一个 \phi(\cdot) 了?亦即 \phi(t) = \sqrt{-2\log (1-t)} 。

现在只要把这一些线索串起来,假设我们有两个相互独立的平均分布在 [0,1] 上的随机变量 T_1 和 T_2 ,那么 2\pi T_1 就可以得到 \theta 了,而 \phi(T_2) = \sqrt{-2\log(1-T_2)} 就得到 r 了(实际上,由于 T_2 和 1-T_2 实际上是相同的分布,所以通常直接写为 \sqrt{-2\log T_2})。再把极坐标换回笛卡尔坐标:

\displaystyle \begin{aligned} x = r\cos\theta = \sqrt{-2\log T_2}\cdot \cos(2\pi T_1) \ y = r\sin\theta = \sqrt{-2\log T_2}\cdot \sin(2\pi T_1) \end{aligned}

这样我们就能得到一个二维的正态分布的抽样了。可以直观地验证一下,二维不太好画,就画成 heatmap 了,看着比较热的区域就是概率比较大的,程序如下:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#!/usr/bin/python import numpy as np import matplotlib.pyplot as plot N = 50000 T1 = np.random.rand(N) T2 = np.random.rand(N) r = np.sqrt(-2*np.log(T2)) theta = 2*np.pi*T1 X = r*np.cos(theta) Y = r*np.sin(theta) heatmap, xedges, yedges = np.histogram2d(X, Y, bins=80) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plot.imshow(heatmap, extent=extent) plot.show()

画出来的图像这个样子:

不太好看,但是大概的形状是可以看出来的。其实有了二维的高斯分布,再注意到两个维度在我们这里是相互独立的,那么直接取其中任意一个维度,就是一个一维高斯分布了。如下:

如果 X\sim N(0,1) 即服从标准正态分布的话,则有 \sigma X+\mu \sim N(\mu, \sigma^2) ,也就是说,有了标准正态分布,其他所有的正态分布的抽样也都可以完成了。这下总算有点心满意足了。不过别急,还有最后一个问题:多元高斯分布。一般最常 用不就是二元吗?二元不是我们一开始就推出来了吗?推出来了确实没错,不过我们考虑的是最简单的情形,当然同样可以通过 \sigma X+\mu 这样的方式来处理每一个维度,不过高维的情形还有一个需要考虑的就是各个维度之间的相关性——我们之前处理的都是两个维度相互独立的情况。对于一般的多维正态分布 X\sim N(\mathbf{\mu}, \Sigma) ,如果各个维度之间是相互独立的,就对应于协方差矩阵 \Sigma 是一个对角阵,但是如果 \Sigma 在非对角线的地方存在非零元素的话,就说明对应的两个维度之间存在相关性。

这个问题还是比较好解决的,高斯分布有这样的性质:类似于一维的情况,对于多维正态分布 X\sim N(\mathbf{\mu}, \Sigma),那么新的随机变量 X_1=\mathbf{\mu}_1 + LX 将会满足

\displaystyle X_1 \sim N(\mathbf{\mu}_1+L\mu, L\Sigma L^T)

所以,对于一个给定的高斯分布 N(\mathbf{\mu}, \Sigma) 来说,只要先生成一个对应维度的标准正态分布 X\sim N(0, I) ,然后令 X_1 = \mu+LX 即可,其中 L 是对 \Sigma 进行 Cholesky Decomposition 的结果,即 \Sigma = LL^T 。

结束之前让我们来看看 matlab 画个 3D 图来改善一下心情:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N = 50000; T1 = rand(1, N); T2 = rand(1, N); r = sqrt(-2*log(T2)); theta = 2*pi*T1; X =[r.*cos(theta); r.*sin(theta)]; mu = [1; 2]; Sigma = [5 2; 2 1]; L = chol(Sigma); X1 = repmat(mu,1, N) + L*X; nbin = 30; hist3(X1', [nbin nbin]); set(gcf, 'renderer', 'opengl'); set(get(gca,'child'), 'FaceColor', 'interp', 'CDataMode', 'auto'); [z c] = hist3(X1', [nbin nbin]); [x y] =meshgrid(c{1}, c{2}); figure; surfc(x,y,-z);

下面两幅图,哪幅好看一些(注意坐标比例不一样,所以看不出形状和旋转了)?似乎都不太好看,不过感觉还是比前面的 heatmap 要好一点啦!

然后,到这里为止,我们算是把高斯分布弄清楚了,不过这只是给一个介绍性的东西,里面的数学推导也并不严格,而 Box Muller 也并不是最高效的高斯采样的算法,不过,就算我们不打算再深入讨论高斯采样,采样这个问题本身也还有许多不尽人意的地方,我们推导出来的结论可以说只能用 于一小部分简单的分布,连高斯分布都要通过 trick 来解决,另一些本身连概率密度函数都写不出来或者有各种奇怪数学特性的分布就更难处理了。所以本文的标题里也说了,这是上篇,如果什么时候有机会抽出时间 来写下篇的话,我将会介绍一些更加通用和强大的方法,诸如 Rejection Sampling 、Gibbs Sampling 以及 Markov Chain Monte Carlo (MCMC) 等方法。如果你比较感兴趣,可以先自行 Google 一下解馋! :D

如何在Python中实现这五类强大的概率分布

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。

统计学入门级:常见概率分布+python绘制分布图

如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量。相应的概率分布有二项分布,泊松分布。

如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量。相应的概率分布有正态分布,均匀分布,指数分布,伽马分布,偏态分布,卡方分布,beta分布等。(真多分布,好恐怖~~)

在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X) 。比如有随机变量,取值依次为:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。

期望值也就是该随机变量总体的均值。 推导过程如下:

= (2+2+2+4+5)/5

= 1/5 2 3 + 4/5 + 5/5

= 3/5 2 + 1/5 4 + 1/5 5

= 0.6 2 + 0.2 4 + 0.2 5

= 60% 2 + 20% 4 + 20%*5

= 1.2 + 0.8 + 1

= 3

倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。

0-1分布(两点分布),它的随机变量的取值为1或0。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p,即:

则称随机变量X服从参数为p的0-1分布,记作X~B(1,p)。

在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等。

大家非常熟悉的抛硬币试验对应的分布就是二项分布。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果。出现正面的次数是一个随机变量,这种随机变量所服从的概率分布通常称为 二项分布 。

像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)

通常称具有上述特征的n次重复独立试验为n重伯努利试验。简称伯努利试验或伯努利试验概型。特别地,当试验次数为1时,二项分布服从0-1分布(两点分布)。

举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率 。

已知p = 0.5 (出现正面的概率) ,n = 3 ,k = 2

所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8。

二项分布的期望值和方差 分别为:

泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布 。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等。 泊松分布的公式为 :

其中 λ 为给定的时间间隔内事件的平均数,λ = np。e为一个数学常数,一个无限不循环小数,其值约为2.71828。

泊松分布的期望值和方差 分别为:

使用Python绘制泊松分布的概率分布图:

因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量,而f(x)就称为 概率密度函数 。

概率密度函数f(x)具有如下性质 :

需要注意的是,f(x)不是一个概率,即f(x) ≠ P(X = x) 。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:

正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布,比如学生的考试成绩就呈现出正态分布的特征,大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上)。还有人的身高等等。

正态分布的定义 :

如果随机变量X的概率密度为( -∞x+∞):

则称X服从正态分布,记作X~N(μ,σ²)。其中-∞μ+∞,σ0, μ为随机变量X的均值,σ为随机变量X的标准差。 正态分布的分布函数

正态分布的图形特点 :

使用Python绘制正态分布的概率分布图:

正态分布有一个3σ准则,即数值分布在(μ-σ,μ+σ)中的概率为0.6827,分布在(μ-2σ,μ+2σ)中的概率为0.9545,分布在(μ-3σ,μ+3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性很小很小,仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值。

当μ=0,σ=1时,有

此时的正态分布N(0,1) 称为标准正态分布。因为μ,σ都是确定的取值,所以其对应的概率密度曲线是一条 形态固定 的曲线。

对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:

假设有一次物理考试特别难,满分100分,全班只有大概20个人及格。与此同时语文考试很简单,全班绝大部分都考了90分以上。小明的物理和语文分别考了60分和80分,他回家后告诉家长,这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了。 Z-Score的计算定义 :

即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦。如果X低于平均值,则Z为负数,反之为正数 。通过计算标准分数,可以将任何一个一般的正态分布转化为标准正态分布。

小明家长从老师那得知物理的全班平均成绩为40分,标准差为10,而语文的平均成绩为92分,标准差为4。分别计算两科成绩的标准分数:

物理:标准分数 = (60-40)/10 = 2

语文:标准分数 = (85-95)/4 = -2.5

从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差。

指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布。比如一班地铁进站的间隔时间。如果随机变量X的概率密度为:

则称X服从指数分布,其中的参数λ0。 对应的分布函数 为:

均匀分布的期望值和方差 分别为:

使用Python绘制指数分布的概率分布图:

均匀分布有两种,分为 离散型均匀分布和连续型均匀分布 。其中离散型均匀分布最常见的例子就是抛掷骰子啦。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2,3,4,5,6。每个数出现的概率都是1/6。

设连续型随机变量X具有概率密度函数:

则称X服从区间(a,b)上的均匀分布。X在等长度的子区间内取值的概率相同。对应的分布函数为:

f(x)和F(x)的图形分别如下图所示:

均匀分布的期望值和方差 分别为:

如何使用python做统计分析

Shape Parameters

形态参数

While a general continuous random variable can be shifted and scaled

with the loc and scale parameters, some distributions require additional

shape parameters. For instance, the gamma distribution, with density

γ(x,a)=λ(λx)a−1Γ(a)e−λx,

requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.

虽然一个一般的连续随机变量可以被位移和伸缩通过loc和scale参数,但一些分布还需要额外的形态参数。作为例子,看到这个伽马分布,这是它的密度函数

γ(x,a)=λ(λx)a−1Γ(a)e−λx,

要求一个形态参数a。注意到λ的设置可以通过设置scale关键字为1/λ进行。

Let’s check the number and name of the shape parameters of the gamma

distribution. (We know from the above that this should be 1.)

让我们检查伽马分布的形态参数的名字的数量。(我们知道从上面知道其应该为1)

from scipy.stats import gamma

gamma.numargs

1

gamma.shapes

'a'

Now we set the value of the shape variable to 1 to obtain the

exponential distribution, so that we compare easily whether we get the

results we expect.

现在我们设置形态变量的值为1以变成指数分布。所以我们可以容易的比较是否得到了我们所期望的结果。

gamma(1, scale=2.).stats(moments="mv")

(array(2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

注意我们也可以以关键字的方式指定形态参数:

gamma(a=1, scale=2.).stats(moments="mv")

(array(2.0), array(4.0))

Freezing a Distribution

冻结分布

Passing the loc and scale keywords time and again can become quite

bothersome. The concept of freezing a RV is used to solve such problems.

不断地传递loc与scale关键字最终会让人厌烦。而冻结RV的概念被用来解决这个问题。

rv = gamma(1, scale=2.)

By using rv we no longer have to include the scale or the shape

parameters anymore. Thus, distributions can be used in one of two ways,

either by passing all distribution parameters to each method call (such

as we did earlier) or by freezing the parameters for the instance of the

distribution. Let us check this:

通过使用rv我们不用再更多的包含scale与形态参数在任何情况下。显然,分布可以被多种方式使用,我们可以通过传递所有分布参数给对方法的每次调用(像我们之前做的那样)或者可以对一个分布对象冻结参数。让我们看看是怎么回事:

rv.mean(), rv.std()

(2.0, 2.0)

This is indeed what we should get.

这正是我们应该得到的。

Broadcasting

广播

The basic methods pdf and so on satisfy the usual numpy broadcasting

rules. For example, we can calculate the critical values for the upper

tail of the t distribution for different probabilites and degrees of

freedom.

像pdf这样的简单方法满足numpy的广播规则。作为例子,我们可以计算t分布的右尾分布的临界值对于不同的概率值以及自由度。

stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])

array([[ 1.37218364, 1.81246112, 2.76376946],

[ 1.36343032, 1.79588482, 2.71807918]])

Here, the first row are the critical values for 10 degrees of freedom

and the second row for 11 degrees of freedom (d.o.f.). Thus, the

broadcasting rules give the same result of calling isf twice:

这里,第一行是以10自由度的临界值,而第二行是以11为自由度的临界值。所以,广播规则与下面调用了两次isf产生的结果相同。

stats.t.isf([0.1, 0.05, 0.01], 10)

array([ 1.37218364, 1.81246112, 2.76376946])

stats.t.isf([0.1, 0.05, 0.01], 11)

array([ 1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of

degrees of freedom i.e., [10, 11, 12], have the same array shape, then

element wise matching is used. As an example, we can obtain the 10% tail

for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.

by calling

但是如果概率数组,如[0.1,0.05,0.01]与自由度数组,如[10,11,12]具有相同的数组形态,则元素对应捕捉被作用,我们可以分别得到10%,5%,1%尾的临界值对于10,11,12的自由度。

stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])

array([ 1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

离散分布的特殊之处

Discrete distribution have mostly the same basic methods as the

continuous distributions. However pdf is replaced the probability mass

function pmf, no estimation methods, such as fit, are available, and

scale is not a valid keyword parameter. The location parameter, keyword

loc can still be used to shift the distribution.

离散分布的简单方法大多数与连续分布很类似。当然像pdf被更换为密度函数pmf,没有估计方法,像fit是可用的。而scale不是一个合法的关键字参数。Location参数,关键字loc则仍然可以使用用于位移。

The computation of the cdf requires some extra attention. In the case of

continuous distribution the cumulative distribution function is in most

standard cases strictly monotonic increasing in the bounds (a,b) and

has therefore a unique inverse. The cdf of a discrete distribution,

however, is a step function, hence the inverse cdf, i.e., the percent

point function, requires a different definition:

ppf(q) = min{x : cdf(x) = q, x integer}

Cdf的计算要求一些额外的关注。在连续分布的情况下,累积分布函数在大多数标准情况下是严格递增的,所以有唯一的逆。而cdf在离散分布,无论如何,是阶跃函数,所以cdf的逆,分位点函数,要求一个不同的定义:

ppf(q) = min{x : cdf(x) = q, x integer}

For further info, see the docs here.

为了更多信息可以看这里。

We can look at the hypergeometric distribution as an example

from scipy.stats import hypergeom

[M, n, N] = [20, 7, 12]

我们可以看这个超几何分布的例子

from scipy.stats import hypergeom

[M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at

those cdf values, we get the initial integers back, for example

如果我们使用在一些整数点使用cdf,它们的cdf值再作用ppf会回到开始的值。

x = np.arange(4)*2

x

array([0, 2, 4, 6])

prb = hypergeom.cdf(x, M, n, N)

prb

array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,

0.9897832817337386])

hypergeom.ppf(prb, M, n, N)

array([ 0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

如果我们使用的值不是cdf的函数值,则我们得到一个更高的值。

hypergeom.ppf(prb + 1e-8, M, n, N)

array([ 1., 3., 5., 7.])

hypergeom.ppf(prb - 1e-8, M, n, N)

array([ 0., 2., 4., 6.])


新闻标题:python算密度函数 python计算概率密度
标题链接:http://scpingwu.com/article/doocgco.html