Redis是典型的单线程架构,所有的读写操作都是在一条主线程中完成的。当Redis用于高并发场景时,这条线程就变成了它的生命线。如果出现阻塞,哪怕是很短时间,对于我们的应用来说都是噩梦。导致阻塞问题的场景大致分为内在原因和外在原因:
创新互联公司10多年成都企业网站建设服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,成都企业网站建设及推广,对成都除甲醛等多个行业拥有多年的网站制作经验的网站建设公司。- 内在原因包括:不合理地使用API或数据结构、CPU饱和、持久化阻塞
等。 - 外在原因包括:CPU竞争、内存交换、网络问题等。
当Redis阻塞时,线上应用服务应该最先感知到,这时应用方会收到大量Redis超时异常,比如Jedis客户端会抛出JedisConnectionException异常。常见的做法是在应用方加入异常统计并通过邮件/短信/微信报警,以便及时发现通知问题。开发人员需要处理如何统计异常以及触发报警的时机。何时触发报警一般根据应用的并发量决定,如1分钟内超过10个异常触发报警。在实现异常统计时要注意,由于Redis调用API会分散在项目的多个地方,每个地方都监听异常并加入监控代码必然难以维护。这时可以借助于日志系统,如Java语言可以使用logback或log4j。
1.2 内在原因定位到具体的Redis节点异常后,首先应该排查是否是Redis自身原因导致,围绕以下几个方面排查:
- API或数据结构使用不合理。
- CPU饱和的问题。
- 持久化相关的阻塞。
通常Redis执行命令速度非常快,但也存在例外,如对一个包含上万个元素的hash结构执行hgetall操作,由于数据量比较大且命令算法复杂度是 O(n),这条命令执行速度必然很慢。这个问题就是典型的不合理使用API和数据结构。对于高并发的场景我们应该尽量避免在大对象上执行算法复杂度超过O(n)的命令
1.如何发现慢查询
Redis原生提供慢查询统计功能,执行slowlog get{n}命令可以获取最近的n条慢查询命令,默认对于执行超过10毫秒的命令都会记录到一个定长队 列中,线上实例建议设置为1毫秒便于及时发现毫秒级以上的命令。如果命令执行时间在毫秒级,则实例实际OPS只有1000左右。慢查询队列长度默认 128,可适当调大。慢查询本身只记录了命令执行时间,不包括数据网络传输时间和命令排队时间,因此客户端发生阻塞异后,可能不是当前命令缓慢,而是在等待其他命令执行。需要重点比对异常和慢查询发生的时间点,确认是否有慢查询造成的命令阻塞排队。发现慢查询后,开发人员需要作出及时调整。可以按照以下两个方向去调整:
1)修改为低算法度的命令,如hgetall改为hmget等,禁用keys、sort等命
令。
2)调整大对象:缩减大对象数据或把大对象拆分为多个小对象,防止一次命令操作过多的数据。大对象拆分过需要视具体的业务决定,如用户好友集合存储在Redis中,有些热点用户会关注大量好友,这时可以按时间或其他维度拆分到多个集合中。
2.如何发现大对象
Redis本身提供发现大对象的工具,对应命令:redis-cli-h{ip}-p{port}bigkeys。内部原理采用分段进行scan操作,把历史扫描过的大对象统计出来便于分析优化
1.2.2 CPU饱和单线程的Redis处理命令时只能使用一个CPU。而CPU饱和是指Redis把单核CPU使用率跑到接近100%。使用top命令很容易识别出对应Redis进程的CPU使用率。CPU饱和是非常危险的,将导致Redis无法处理更多的命令,严重影响吞吐量和应用方的稳定性。对于这种情况,首先判断当前Redis的并发量是否达到极限,建议使用统计命令redis-cli-h{ip}-p{port}–stat获取当前Redis使用情况,该命令每秒输出一行统计信息,运行效果如下:
root@31f5a31358e3:/data# redis-cli --stat
------- data ------ --------------------- load -------------------- - child -
3789785 3.20G 507 0 8867955607 (+0) 555894
3789813 3.20G 507 0 8867959511 (+63904) 555894
3789822 3.20G 507 0 8867961602 (+62091) 555894
3789831 3.20G 507 0 8867965049 (+63447) 555894
3789842 3.20G 507 0 8867969520 (+62675) 555894
3789845 3.20G 507 0 8867971943 (+62423) 555894
以上输出是一个接近饱和的Redis实例的统计信息,它每秒平均处理6万+的请求。对于这种情况,垂直层面的命令优化很难达到效果,这时就需要做集群化水平扩展来分摊OPS压力。如果只有几百或几千OPS的Redis实例就接近CPU饱和是很不正常的,有可能使用了高算法复杂度的命令。
还有一种情况是过度的内存优化,这种情况有些隐蔽,需要我们根据infocommandstats统计信息分析出命令不合理开销时间,例如下面的耗时统计:cmdstat_hset:calls=198757512,usec=27021957243,usec_per_call=135.9查看这个统计可以发现一个问题,hset命令算法复杂度只有O(1)但平均耗时却达到135微秒,显然不合理,正常情况耗时应该在10微秒以下。这是因为上面的Redis实例为了追求低内存使用量,过度放宽ziplist使用条件修改了hash-max-ziplist-entries和hash-max-ziplist-value配置)。进程内的hash对象平均存储着上万个元素,而针对ziplist的操作算法复杂度在O(n)到O(n2)之间。虽然采用ziplist编码后hash结构内存占用会变小,但是操作变得更慢且更消耗CPU。ziplist压缩编码是Redis用来平衡空间和效率的优化手段,不可过度使用。
1.2.3 持久化阻塞对于开启了持久化功能的Redis节点,需要排查是否是持久化导致的阻塞。持久化引起主线程阻塞的操作主要有:fork阻塞、AOF刷盘阻塞、HugePage写操作阻塞。
- fork阻塞
fork操作发生在RDB和AOF重写时,Redis主线程调用fork操作产生共享内存的子进程,由子进程完成持久化文件重写工作。如果fork操作本身耗时过长,必然会导致主线程的阻塞。可以执行info stats命令获取到latest_fork_usec指标,表示Redis最近一次fork操作耗时,如果耗时很大,比如超过1秒,则需要做出优化调整,如避免使用过大的内存实例和规避fork缓慢的操作系统等。
- AOF刷盘阻塞
当我们开启AOF持久化功能时,文件刷盘的方式一般采用每秒一次,后台线程每秒对AOF文件做fsync操作。当硬盘压力过大时,fsync操作需要等待,直到写入完成。如果主线程发现距离上一次的fsync成功超过2秒,为了数据安全性它会阻塞直到后台线程执行fsync操作完成。这种阻塞行为主要是硬盘压力引起,可以查看Redis日志识别出这种情况,当发生这种阻塞行为时,会打印如下日志:
buffer without waiting for fsync to complete, this may slow down Redis.
也可以查看info persistence统计中的aof_delayed_fsync指标,每次发生fdatasync阻塞主线程时会累加。定位阻塞问题后具体优化方法见第5.3节的AOF追加阻塞部分.
- HugePage写操作阻塞
子进程在执行重写期间利用Linux写时复制技术降低内存开销,因此只有写操作时Redis才复制要修改的内存页。对于开启Transparent HugePages的操作系统,每次写命令引起的复制内存页单位由4K变为2MB,放大了51倍,会拖慢写操作的执行时间,导致大量写操作慢查询。例如简单的incr命令也会出现在慢查询中。
1.3 外在原因排查Redis自身原因引起的阻塞原因之后,如果还没有定位问题,需要排查是否由外部原因引起。围绕以下三个方面进行排查:
- CPU竞争
- 内存交换
- 网络问题
CPU竞争问题如下:
- 进程竞争:Redis是典型的CPU密集型应用,不建议和其他多核CPU密集型服务部署在一起。当其他进程过度消耗CPU时,将严重影响Redis吞吐量。可以通过top、sar等命令定位到CPU消耗的时间点和具体进程,这个问题比较容易发现,需要调整服务之间部署结构。
- 绑定CPU:部署Redis时为了充分利用多核CPU,通常一台机器部署多个实例。常见的一种优化是把Redis进程绑定到CPU上,用于降低CPU频繁上下文切换的开销。
内存交换(swap)对于Redis来说是非常致命的,Redis保证高性能的一个重要前提是所有的数据在内存中。如果操作系统把Redis使用的部分内存换出到硬盘,由于内存与硬盘读写速度差几个数量级,会导致发生交换后Redis性能急剧下降。
1.3.3 网络问题网络问题经常是引起Redis阻塞的问题点。常见的网络问题主要有:连接拒绝、网络延迟、网卡软中断等。
你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧
文章名称:Redis学记笔记——(13)阻塞-创新互联
链接URL:http://scpingwu.com/article/dgipps.html