RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
如何修改TensorFlow保存数量的限制-创新互联

本篇文章为大家展示了如何修改TensorFlow保存数量的限制,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

新泰网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站开发等网站项目制作,到程序开发,运营维护。创新互联于2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

设置如下:

 saver 
 =
 tf.train.Saver(
 max_to_keep
 =
 100
 ,
 keep_checkpoint_every_n_hours
 =
 1
 )

补充:解决TensorFlow只能保存5个模型的问题

直奔主题

在训练模型的代码中找到这句代码:tf.train.Saver(),

改成:

tf.train.Saver(max_to_keep = m) # m为你想保存的模型数量

扩展

Saver类中的可选参数

tf.train.Saver(max_to_keep = m, keep_checkpoint_every_n_hours = n)

max_to_keep保存离当前训练最近的模型数量,默认值为5。如果想全部保存,并且电脑内存够用,设成多大都可以。

keep_checkpoint_every_n_hours每隔n个小时保存一次模型,默认值为10,000(一般情况下应该不会训练这么长时间,所以相当于是不会按照时间来保存,按照设置的epoch保存节点数来保存)。

上述内容就是如何修改TensorFlow保存数量的限制,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。


网站栏目:如何修改TensorFlow保存数量的限制-创新互联
文章源于:http://scpingwu.com/article/desjgc.html