RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
怎么用Python来分析红楼梦里的人物关系-创新互联

这篇文章主要介绍了怎么用Python来分析红楼梦里的人物关系,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

创新互联服务项目包括兴庆网站建设、兴庆网站制作、兴庆网页制作以及兴庆网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,兴庆网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到兴庆省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

数据准备

红楼梦 TXT 文件一份

金陵十二钗 + 贾宝玉 人物名称列表

人物列表内容如下:

宝玉 nr
黛玉 nr
宝钗 nr
湘云 nr
凤姐 nr
李纨 nr
元春 nr
迎春 nr
探春 nr
惜春 nr
妙玉 nr
巧姐 nr
秦氏 nr

这份列表,同时也是为了做分词时使用,后面的 nr 就是人名的意思。

数据处理

读取数据并加载词典

  with open("红楼梦.txt", encoding='gb18030') as f:
    honglou = f.readlines()
  jieba.load_userdict("renwu_forcut")
  renwu_data = pd.read_csv("renwu_forcut", header=-1)
  mylist = [k[0].split(" ")[0] for k in renwu_data.values.tolist()]

这样,我们就把红楼梦读取到了 honglou 这个变量当中,同时也通过 load_userdict 将我们自定义的词典加载到了 jieba 库中。

对文本进行分词处理并提取

tmpNames = []
  names = {}
  relationships = {}
  for h in honglou:
    h.replace("贾妃", "元春")
    h.replace("李宫裁", "李纨")
    poss = pseg.cut(h)
    tmpNames.append([])
    for w in poss:
      if w.flag != 'nr' or len(w.word) != 2 or w.word not in mylist:
        continue
      tmpNames[-1].append(w.word)
      if names.get(w.word) is None:
        names[w.word] = 0
      relationships[w.word] = {}
      names[w.word] += 1
  • 首先,因为文中"贾妃", "元春","李宫裁", "李纨" 混用严重,所以这里直接做替换处理。

  • 然后使用 jieba 库提供的 pseg 工具来做分词处理,会返回每个分词的词性。

  • 之后做判断,只有符合要求且在我们提供的字典列表里的分词,才会保留。

  • 一个人每出现一次,就会增加一,方便后面画关系图时,人物 node 大小的确定。

  • 对于存在于我们自定义词典的人名,保存到一个临时变量当中 tmpNames。

处理人物关系

  for name in tmpNames:
    for name1 in name:
      for name2 in name:
        if name1 == name2:
          continue
        if relationships[name1].get(name2) is None:
          relationships[name1][name2] = 1
        else:
          relationships[name1][name2] += 1

对于出现在同一个段落中的人物,我们认为他们是关系紧密的,每同时出现一次,关系增加1.

保存到文件

  with open("relationship.csv", "w", encoding='utf-8') as f:
    f.write("Source,Target,Weight\n")
    for name, edges in relationships.items():
      for v, w in edges.items():
        f.write(name + "," + v + "," + str(w) + "\n")

  with open("NameNode.csv", "w", encoding='utf-8') as f:
    f.write("ID,Label,Weight\n")
    for name, times in names.items():
      f.write(name + "," + name + "," + str(times) + "\n")
  • 文件1:人物关系表,包含首先出现的人物、之后出现的人物和一同出现次数

  • 文件2:人物比重表,包含该人物总体出现次数,出现次数越多,认为所占比重越大。

制作关系图表

使用 pyecharts 作图

def deal_graph():
  relationship_data = pd.read_csv('relationship.csv')
  namenode_data = pd.read_csv('NameNode.csv')
  relationship_data_list = relationship_data.values.tolist()
  namenode_data_list = namenode_data.values.tolist()

  nodes = []
  for node in namenode_data_list:
    if node[0] == "宝玉":
      node[2] = node[2]/3
    nodes.append({"name": node[0], "symbolSize": node[2]/30})
  links = []
  for link in relationship_data_list:
    links.append({"source": link[0], "target": link[1], "value": link[2]})

  g = (
    Graph()
    .add("", nodes, links, repulsion=8000)
    .set_global_opts(title_opts=opts.TitleOpts(title="红楼人物关系"))
  )
  return g

首先把两个文件读取成列表形式

对于“宝玉”,由于其占比过大,如果统一进行缩放,会导致其他人物的 node 过小,展示不美观,所以这里先做了一次缩放

最后得出的关系图

怎么用Python来分析红楼梦里的人物关系

所有代码已经上传至 Github

最后,我还准备了一份更加全面的红楼人物字典,可以在代码仓库中找到-“renwu_total”,感兴趣的小伙伴也可以尝试下,制作一个全人物的关系图。

感谢你能够认真阅读完这篇文章,希望小编分享的“怎么用Python来分析红楼梦里的人物关系”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:怎么用Python来分析红楼梦里的人物关系-创新互联
分享地址:http://scpingwu.com/article/cescdg.html